Building Visual C++ Projects with CMake

March 26, 2013

In previous post my colleague showed how to create RPM packages with CMake. As a really versatile tool it is also able to create and build Visual Studio projects on Windows. This property makes it very valuable when you want to integrate your project into a CI cycle(in our case Jenkins).

Prerequisites:

To be able to compile anything following packages needed to be installed beforehand:

  •  CMake. It is helpful to put it in the PATH environment variable so that absolute paths aren’t needed.
  • Microsoft Windows SDK for Windows 7 and .NET Framework 4 (the web installer or  the ISOs).  The part “.NET Framework 4” is very important, since when the SDK for the .NET Framework 3.5 is installed you will get following parse error for your *.vcxproject files:

    error MSB4066: The attribute “Label” in element is unrecognized

    at the following position:

    <ItemGroup Label=”ProjectConfigurations”>

    Probably equally important is the bitness of the installed SDK. The x64 ISO differs only in one letter from the x86 one. Look for the X if want 64 bit.

  • .NET Framework 4, necessary to make msbuild run

It is possible that you encounter following message during your SDK setup:

A problem occurred while installing selected Windows SDK components. Installation of the “Microsoft Windows SDK for Windows 7″ product has reported the following error: Please refer to Samples\Setup\HTML\ConfigDetails.htm document for further information. Please attempt to resolve the problem and then start Windows SDK setup again. If you continue to have problems with this issue, please visit the SDK team support page at http://go.microsoft.com/fwlink/?LinkId=130245. Click the View Log button to review the installation log. To exit, click Finish.

The reason behind this wordy and less informative error message were the Visual C++ Redistributables installed on the system. As suggested by Microsoft KB article removing them all helped.

Makefiles:

For CMake to build anything you need to have a CMakeLists.txt file in your project. For a tutorial on how to use CMake, look at this page. Here is a simple CMakeLists.txt to get you started:

project(MyProject)
 cmake_minimum_required(VERSION 2.6)
 set(source_files
 main.cpp
 )
 include_directories(
 ${CMAKE_CURRENT_SOURCE_DIR}
 )
 add_executable(MyProject ${source_files})

Building:

To build a project there are few steps necessary. You can enter them in your CI directy or put them in a batch file.

call "%ProgramFiles%\Microsoft SDKs\Windows\v7.1\Bin\SetEnv.cmd" /Release /x86

With this call all necessary environment variables are set. Be careful on 64 bit platforms as jenkins slave executes this call in a 32 bit context and so “%ProgramFiles%” is resolved to “ProgramFiles (x86)” where the SDK does not lie.

del CMakeCache.txt

This command is not strictly necessary, but it prevents you from working with outdated generated files when you change your configuration.

cmake -G "Visual Studio 10" .

Generates a Visual Studio 2010 Solution. Every change to the solution and the project files will be gone when you call it, so make sure you track all necessary files in the CMakeLists.txt.

cmake --build . --target ALL_BUILD --config Release

The final step. It will net you the MyProject.exe binary. The target parameter is equal to the name of the project in the solution and the config parameter is one of the solution configurations.

Final words:

The hardest and most time consuming part was the setup of prerequisites. Generic, not informative error messages are the worst you can do to a clueless customer. But… when you are done with it, you are only two small steps apart from an automatically built executable.


Building Windows C++ Projects with CMake and Jenkins

July 24, 2012

The C++ programming environment where I feel most comfortable is GCC/Linux (lately with some clang here and there). In terms of build systems I use cmake whenever possible. This environment also makes it easy to use Jenkins as CI server and RPM for deployment and distribution tasks.

So when presented with the task to set up a C++ windows project in Jenkins I tried to do it the same way as much as possible.

The Goal:

A Jenkins job should be set up that builds a windows c++ project on a Windows 7 build slave. For reasons that I will not get into here, compatibility with Visual Studio 8 is required.

The first step was to download and install the correct Windows SDK. This provides all that is needed to build C++ stuff under windows.

Then, after installation of cmake, the first naive try looked like this (in an “execute Windows Batch file” build step)

cmake . -DCMAKE_BUILD_TYPE=Release

This cannot work of course, because cmake will not find compilers and stuff.

Problem: Build Environment

When I do cmake builds manually, i.e. not in Jenkins, I open the Visual Studio 2005 Command Prompt which is a normal windows command shell with all environment variables set. So I tried to do that in Jenkins, too:

call “c:\Program Files\Microsoft SDKs\Windows\v6.0\Bin\SetEnv.Cmd” /Release /x86

cmake . -DCMAKE_BUILD_TYPE=Release

This also did not work and even worse, produced strange (to me, at least) error messages like:

‘Cmd’ is not recognized as an internal or external command, operable program or batch file.

The system cannot find the batch label specified – Set_x86

After some digging, I found the solution: a feature of windows batch programming called delayed expansion, which has to be enabled for SetEnv.Cmd to work correctly.

Solution: SetEnv.cmd and delayed expansion

setlocal enabledelayedexpansion

call “c:\Program Files\Microsoft SDKs\Windows\v6.0\Bin\SetEnv.Cmd” /Release /x86

cmake . -DCMAKE_BUILD_TYPE=Release

nmake

Yes! With this little trick it worked perfectly. And feels almost as with GCC/CMake under Linux:  nice, short and easy.


Basic Image Processing Tasks with OpenCV

June 18, 2012

For one of our customers in the scientific domain we do a lot of integration of pieces of hardware into the existing measurement- and control network. A good part of these are 2D detectors and scientific CCD cameras, which have all sorts of interfaces like ethernet, firewire and frame grabber cards. Our task is then to write some glue software that makes the camera available and controllable for the scientists.

One standard requirement for us is to do some basic image processing and analytics. Typically, this entails flipping the image horizontally and/or vertically, rotating the image around some multiple of 90 degrees, and calculcating some statistics like standard deviation.

The starting point there is always some image data in memory that has been acquired from the camera. Most of the time the image data is either gray values (8, or 16 bit), or RGB(A).

As we are generally not falling victim to the NIH syndrom we use open source image processing librarys. The first one we tried was CImg, which is a header-only (!) C++ library for image processing. The header-only part is very cool and handy, since you just have to #include <CImg.h> and you are done. No further dependencies. The immediate downside, of course, is long compile times. We are talking about > 40000 lines of C++ template code!

The bigger issue we had with CImg was that for multi-channel images the memory layout is like this: R1R2R3R4…..G1G2G3G4….B1B2B3B4. And since the images from the camera usually come interlaced like R1G1B1R2G2B2… we always had to do tricks to use CImg on these images correctly. These tricks killed us eventually in terms of performance, since some of these 2D detectors produce lots of megabytes of image data that have to be processed in real time.

So OpenCV. Their headline was already very promising:

OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision.

Especially the words “real time” look good in there. But let’s see.

Image data in OpenCV is represented by instances of class cv::Mat, which is, of course, short for Matrix. From the documentation:

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point clouds, tensors, histograms.

Our standard requirements stated above can then be implemented like this (gray scale, 8 bit image):

void processGrayScale8bitImage(uint16_t width, uint16_t height,
                               const double& rotationAngle,
                               uint8_t* pixelData)
{
  // create cv::Mat instance
  // pixel data is not copied!
  cv::Mat img(height, width, CV_8UC1, pixelData);

  // flip vertically
  // third parameter of cv::flip is the so-called flip-code
  // flip-code == 0 means vertical flipping
  cv::Mat verticallyFlippedImg(height, width, CV_8UC1);
  cv::flip(img, verticallyFlippedImg, 0);

  // flip horizontally
  // flip-code > 0 means horizontal flipping
  cv::Mat horizontallyFlippedImg(height, width, CV_8UC1);
  cv::flip(img, horizontallyFlippedImg, 1);

  // rotation (a bit trickier)
  // 1. calculate center point
  cv::Point2f center(img.cols/2.0F, img.rows/2.0F);
  // 2. create rotation matrix
  cv::Mat rotationMatrix =
    cv::getRotationMatrix2D(center, rotationAngle, 1.0);
  // 3. create cv::Mat that will hold the rotated image.
  // For some rotationAngles width and height are switched
  cv::Mat rotatedImg;
  if ( (rotationAngle / 90.0) % 2 != 0) {
    // switch width and height for rotations like 90, 270 degrees
    rotatedImg =
      cv::Mat(cv::Size(img.size().height, img.size().width),
              img.type());
  } else {
    rotatedImg =
      cv::Mat(cv::Size(img.size().width, img.size().height),
              img.type());
  }
  // 4. actual rotation
  cv::warpAffine(img, rotatedImg,
                 rotationMatrix, rotatedImg.size());

  // save into TIFF file
  cv::imwrite("myimage.tiff", gray);
}

The cool thing is that almost the same code can be used for our other image types, too. The only difference is the image type for the cv::Mat constructor:


8-bit gray scale: CV_U8C1
16bit gray scale: CV_U16C1
RGB : CV_U8C3
RGBA: CV_U8C4

Additionally, the whole thing is blazingly fast! All performance problems gone. Yay!

Getting basic statistical values is also a breeze:

void calculateStatistics(const cv::Mat& img)
{
  // minimum, maximum, sum
  double min = 0.0;
  double max = 0.0;
  cv::minMaxLoc(img, &min, &max);
  double sum = cv::sum(img)[0];

  // mean and standard deviation
  cv::Scalar cvMean;
  cv::Scalar cvStddev;
  cv::meanStdDev(img, cvMean, cvStddev);
}

All in all, the OpenCV experience was very positive, so far. They even support CMake. Highly recommended!


Use Boost’s Multi Index Container!

May 14, 2012

Sometimes, after you have used a special library or other special programming tool for a job, you forget about it because you don’t have that specific use case anymore. Boost’s multi_index container could fall in this category because you don’t have to hold data in memory with the need to access it by different keys all the time.

Therefore, this post is intended to be a reminder for c++ programmers that there exists this pretty cool thing called boost::multi_index_container and that you can use it in more situations than you would think at first.

(If you’re already using it on a regular basis you may stop here, jump directly to the comments and tell us about your typical use cases.)

I remember when I discovered boost::multi_index_container I found it quite intimidating at first sight. All those templates that are used in sometimes weird ways can trigger that feeling if you are not a template metaprogramming specialist (i.e. haven’t yet read Andrei Alexandrescu’s book “Modern C++ Design” ).

But if you look at it after you fought your way through the documentation and after your unit test is green that tests your first example, it doesn’t look that complicated anymore.

My latest use case for boost::multi_index_container was data objects that should be sorted by two different date-times. (For dates and times we use boost::date_time, of course). At first, the requirement was to store the objects sorted by one date time. I used a std::set for that with a custom comparator. Everything was fine.

With changing requirements it became necessary to retrieve objects by another date time, too. I started to use another std::set with a different comparator but then I remembered that there was some cool container somewhere in boost for which you can define multiple indices ….

After I had set it up with the two date time indices, the code also looked much cleaner because in order to update one object with a new time stamp I could just call container->replace(…) instead of fiddling around with the std::set.

Furthermore, I noticed that setting up a boost::multi_index_container with a specific key makes it much clearer what you intend with this data structure than using a std::set with a custom comparator. It is not that much more typing effort, and you can practice template metaprogramming a little bit :-)

Let’s compare the two implementations:

#include <boost/shared_ptr.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
using boost::posix_time::ptime;

// objects of this class should be stored
class MyDataClass
{
  public:
    const ptime& getUpdateTime() const;
    const ptime& getDataChangedTime() const;

  private:
    ptime _updateTimestamp;
    ptime _dataChangedTimestamp;
};
typedef boost::shared_ptr<MyDataClass> MyDataClassPtr;

Now the definition of a multi index container:

#include <boost/multi_index_container.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/mem_fun.hpp>
using namespace boost::multi_index;

typedef multi_index_container
<
  MyDataClassPtr,
  indexed_by
  <
    ordered_non_unique
    <
      const_mem_fun<MyDataClass, 
        const ptime&, 
        &MyDataClass::getUpdateTime>
    >
  >
> MyDataClassContainer;

compared to std::set:

#include <set>

// we need a comparator first
struct MyDataClassComparatorByUpdateTime
{
  bool operator() (const MyDataClassPtr& lhs, 
                   const MyDataClassPtr& rhs) const
  {
    return lhs->getUpdateTime() < rhs->getUpdateTime();
  }
};
typedef std::multiset<MyDataClassPtr, 
                      MyDataClassComparatorByUpdateTime> 
   MyDataClassSetByUpdateTime;

What I like is that the typedef for the multi index container reads almost like a sentence. Besides, it is purely declarative (as long as you get away without custom key extractors), whereas with std::multiset you have to implement the comparator.

In addition to being a reminder, I hope this post also serves as motivation to get to know boost::multi_index_container and to make it a part of your toolbox. If you still have fears of contact, start small by replacing usages of std::set/multiset.


Don’t mix C++ smart pointers with references

January 30, 2012

As I did in the past, I will use this post as means to remember and to push the following principle deeper in my head – and hopefully in yours as a reader and C++ programmer:

Do not mix smart pointers with references in your C++ programms.

Of course I knew that before I created this little helper library, that was supposed to make it easier to send data asynchronous over an existing connection. Here is the situation (simplified):

class A
{
  ...
  void doStuff();

  private:
     // a private shared_ptr to B
    boost::shared_ptr<B> _bPointer;
};

class C
{
  public:
    C(B& b) : _b(b)
    {}

    ~C()
    {
      _bRef.resetSomeValueToDefault();
    }

  private:
     // a private reference to B which is set in the ctor
    B& _bRef;
};

void A::doStuff()
{
  createBpointerIfNotExisting();
  C myC(*_bPointer);
  myC.someMethodThatDoesSomethingWithB();
  if (someCondition) {
    // Delete this B instance.
    // A new instance will be created next time
    _bPointer.reset();
  }
}

So class A has a shared pointer of B which is given as a reference to an instance of class C in method A::doStuff. Class C stores the B instance as reference and interacts with it during its lifetime, which ends at the end of A::doStuff.

The last interaction occurrs at the very end of its life – in the destructor.

I highlighted the most important facts, but I’ll give you a few more moments …

The following happens (in A::doStuff):

  • line 29: if no instance of B exists (i.e. _bPointer is null), a new B instance is created and held in _bPointer
  • line 30: instance myC of C is created on the stack. A reference of B is given as ctor parameter
  • line 32-35: if “someCondition” is true, _bPointer is reseted which means that the B instance gets deleted
  • line 37: A::doStuff() ends and myC goes out of scope
  • line 19: the destructor of C is called and _bRef is accessed
  • since the B instance does not exist any more … memory corruption!!!

The most annoying thing with this kind of errors is that the program crashes somewhere, but almost never where the error actually occurred. This means, that you get stack traces pointing you right into some rock-solid 3rd party library which had never failed since you know and use it, or to some completely unrelated part in your code that had worked without any problems before and hasn’t been changed in years.

I even had these classes unit tested before I integrated them. But for some strange reason – maybe because everything gets reset after each test method – the bug never occurred in the tests.

So always be very cautious when you mix smart pointers with references, and when you do, make sure you have your object lifetimes completely under control!


Debug Output

November 14, 2011

Writing a blog post sometimes can be useful to get some face-palm kind of programming error out of one’s system.

Putting such an error into written words then serves a couple of purposes:

  • it helps oneself remembering
  • it helps others who read it not to do the same thing
  • it serves as error log for future reference

So here it comes:

In one project we use JSON to serialize objects in order to send them over HTTP (we use the very nice JSON Spirit library, btw).

For each object we have serialize/deserialize methods which do the heavy lifting. After having developed a new deserialize method I wanted to test it together with the HTTP request handling. Using curl for this I issued a command like this:

curl -X PUT http://localhost:30222/some/url -d @datafile

This command issues a PUT request to the given URL and uses data in ./datafile, which contains the JSON, as request data.

The request came through but the deserializer wouldn’t do its work. WTF? Let’s see what goes on – let’s put some debug output in:

MyObject MyObjectSerializer::deserialize(std::istream& jsonIn)
{
   // debug output starts here
   std::string stringToDeserialize;
   Poco::StreamCopier::copyToString(jsonIn, stringToDeserialize);
   std::cout << "The String: " << stringToDeserialize << std::endl;
   // debug output ends here

   json_spirit::Value value;
   json_spirit::read(jsonIn, value);
   ...
}

I’ll give you some time to spot the bug…. 3..2..1..got it? Please check Poco::StreamCopier documentation if you are not familiar with POCO libraries.
What’s particularly misleading is the “Copier” part of the name StreamCopier, because it does not exactly copy the bytes from the stream into the string – it moves them. This means that after the debug output code, the istream is empty.

Unfortunately, I did not immediately recognize the change in the error outputs of the JSON parser. This might have given me a hint to the real problem. Instead, during the next half hour I searched for errors in the JSON I was sending.

When I finally realized it …


Embedding Python into C++

October 10, 2011

In one of our projects the requirement to run small user-defined Python scripts inside a C++ application arose. Thanks to Python’s C-API, nicknamed CPython, embedding (really) simple scripts is pretty straightforward:

Py_Initialize();
const char* pythonScript = "print 'Hello, world!'\n";
int result = PyRun_SimpleString(pythonScript);
Py_Finalize();

Yet, this approach does neither allow running extensive scripts, nor does it provide a way to exchange data between the application and the script. The result of this operation merely indicates whether the script was executed properly by returning 0, or -1 otherwise, e.g. if an exception was raised. To overcome these limitations, CPython offers another, more versatile way to execute scripts:

PyObject* PyRun_String(const char* pythonScript, int startToken, PyObject* globalDictionary, PyObject* localDictionary)

Besides the actual script, this function requires a start token, which should be set to Py_file_input for larger scripts, and two dictionaries containing the exchanged data:

PyObject* main = PyImport_AddModule("__main__");
PyObject* globalDictionary = PyModule_GetDict(main);
PyObject* localDictionary = PyDict_New();
PyObject* result = PyRun_String(pythonScript, Py_file_input, globalDictionary, localDictionary);

Communication between the application and the script is done by inserting entries to one of the dictionaries prior to running the script:

PyObject* value = PyString_FromString("some value");
PyDict_SetItemString(localDict, "someKey", value);

Doing so makes the variable “someKey” and its value available inside the Python script. Accessing the produced data after running the Python script is just as easy:

char* result = String_AsString(PyDict_GetItemString(localDict, "someKey"));

If a variable is created inside the Python script, this variable also becomes accessible from the application through PyDict_GetItemString (or PyDict_GetItem), even if it was not entered into the dictionary beforehand.

The following example shows the complete process of defining variables as dictionary entries, running a small script and retrieving the produced result in the C++ application:

Py_Initialize();
//create the dictionaries as shown above
const char* pythonScript = "result = multiplicand * multiplier\n";
PyDict_SetItemString(localDictionary, "multiplicand", PyInt_FromLong(2));
PyDict_SetItemString(localDictionary, "multiplier", PyInt_FromLong(5));
PyRun_String(pythonScript, Py_file_input, globalDictionary, localDictionary);
long result = PyInt_AsLong(PyDict_GetItemString(localDictionary, "result"));
cout << result << endl;
Py_Finalize();

The Great Divide

August 8, 2011

Recently, I had two very contrary conversations about C++ which show very good the great divide in C++ developer community.

The first was with the technical lead of a team that writes and maintains drivers and control software for a scientific institution. These systems run 24/7 and have to be very stable and reliable.

I had discovered that they use a self-written toolbox library containing classes like SharedPtr<T>, and Thread and suspected immediately a classical NIH-syndrome. I asked him about it and why they don’t use well established libraries like boost. He told me that they indeed are only using the standard library and their own toolbox.

The reason he gave was that despite boost being most elegant C++ library out there, it required very good knowledge about the most advanced C++ mechanisms, and that his team was not on this level … I should probably mention here that his team does a very good job in running their systems. So, apparently, they get along very well with using only basic  C++ features and no “fancy” boost stuff.

The other conversation was with a friend of mine with whom I chat regularly about all sorts of programming related stuff. This time the topic was the upcoming  C++ standard and all its  exciting new stuff. He has lot’s of experience with C++ and knows the language very well. But even someone like him had a hard time to really understand what rvalue references are all about. I had not looked at them in detail, yet,  so he tried to explain them to me. During our discussion I was thinking about if teams like the one introduced before will ever use rvalue references, or other C++0X stuff in their production code, other than maybe the auto keyword for type inference, or constructor delegation.

Honestly, I don’t think stuff like  rvalue refs will become a feature that is often used by “standard industry” teams, because it adds a lot of complexity to an already complex language. Even easy-to-get stuff like the new keywords override, constexpr and final, or additional initialization means like std::initializer_list<T> will take a lot of time to get used regularly by most C++ teams.

Instead, most of C++0X will greatly increase the divide between “normal” C++ developers who get along well with using only basic language features, and experts that know every little corner of the language. And this is simply because there is so much more to know with C++0X.

But don’t let us paint this picture overly black. I, for one, am looking forward to the new standard and I will certainly spread the word about the new possibilities and features in every C++ team I work with.


Bogus Error Messages with Qt .ui Files

July 11, 2011

Bogus errors together with their messages can have a large number of reasons – full hard drives being one of the classics. When it comes to programming and especially C++, the possibilities for cryptic, meaningless and misleading error message are infinite.

A nice one bit us at one of our customers the other day. The message was something like

QLayout can only have instances of QWidget as parent

and it appeared as standard error output during program start-up. Needless to say that the whole thing crashed with a segmentation fault after that. The only change that was made was a header file that was added to the Qt files list in the CMakeLists.txt file.  The Qt class in this header file was just in its beginnings and had not yet any QLayouts, or QWidgets in it. Even the  C++ standard measure of cleaning and recompiling everything didn’t help.

So how is it possible that an additional Qt header file that has not references to QLayout and QWidget can cause such an error message?

As all of you experienced C/C++ developers know, for the compiler, a code file is not only the stuff that it contains directly but also what is #included! The offending header file included a generated ui description file which you get when you design your windows – or Forms in Qt terminology – with the Qt designer and use the Compile-Time-Form-Processing-approach to incorporate the form into the code base.

But how can that effect anything?

The Qt designer saves the forms into .ui files. From that, the so-called User Interface Compiler (uic) generates a header file containing a C++ class together with inlined code that creates the form. Form components like line edits, or push buttons are generated as instance attributes. The name of the class is generated from the name of the form. You can even use namespaces.  By naming it e.g. myproject::BestFormEverDesigned the generated class is named BestFormEverDesigned   is put into namespace myproject.

So far, so nice, handy and easy to use.

When you create a new form in qt designer, the default name is Form. Maybe you can guess already where this leads to…

Two forms for which the respective developers forgot to set a proper name, existed in the same sub project and had been compiled and linked into the same shared library. The compiler has no chance to detect this, because it sees only one

class Form
{

at a time. The linker happily links all of this together since it thinks that all Forms are created equal. And then at run-time … Boom!

I will have to look into a little Jenkins helper which breaks the build when a Form form is checked in…


Looping in C++

May 16, 2011

One recurring discussion point in one of our customers C++ project team is the following:

What is “the best” way to loop over collections?

In a typical scenario there is a standard container like std::list, or some equivalent collection, and the task is to do something with every element in the collection. The straight forward way would be like this:

std::list<std::string> mylist;
for (std::list<std::string>::iterator iter = mylist.begin(); iter != mylist.end(); iter++)
{
   ...
}

This code is correct and readable. But my guess is that most of you instantly see at least two possible improvements:

  1. the call to mylist.end() occurs in every loop an can be expensive e.g. in case of long std::lists
  2. iter++ creates one unnecessary intermediate object on the stack

So this

for (std::list<std::string>::iterator iter = mylist.begin(), end = mylist.end(); iter != end; ++iter)
{
   ...
}

would be much better but can already be seen as a little less readable.

Using BOOST_FOREACH can save you much of this still tedious code but has one nasty pitfall when it comes to std::maps.

In some places of the code base std::for_each is used together with a function, or function object.  The downside of this is that the function/function object code is not located where the loop occurs. However, this can be made “readable enough” when the function, or function object does only one thing and has a telling name.

Looping is sometimes done to create other collections of objects for each element. What to do there? Define the new collection use a for-loop of BOOST_FOREACH like above, or use std::transform with the same downside as std::for_each?

The other day one team member suggested to use boost::lambda expressions in loops. The initial usage examples where very promising but let me tell you – readability can drop dramatically very fast if you don’t be careful. It is very easy to get carried away with boost’s lambdas. I happened that we found ourselves having spent the last hour to carve out a super crisp lambda expression that takes anybody else another hour to read.

So the initial question remains undecided and will most likely stay like that. As for everything else in programming, there doesn’t seem to be a silver bullet for this task.

How do you go about looping in C++? Do you have some kind of coding style in place? Do you use std::for_each, BOOST_FOREACH, or some other means?

Looking forward to some feedback.


Follow

Get every new post delivered to your Inbox.

Join 64 other followers