Diving into Hibernate’s Query Cache behaviour

Hibernate is a very sophisticated OR-Mapper and as such has some overhead for certain usage patterns or raw queries. Through proper usage of caches (hibernates featured a L1, L2 cache and a query cache) you can get both performance and convenience if everything fits together. When trying to get more of our persistence layer we performed some tests with the query cache to be able to decide if it is worth using for us. We were puzzled by the behaviour in our test case: Despite everything configured properly we never had any cache hits into our query cache using the following query-sequence:

  1. Transaction start
  2. Execute query
  3. Update a table touched by query
  4. Execute query
  5. Execute query
  6. Transaction end

We would expect that step 5 would be a cache hit but in our case it was not. So we dived into the source of the used hibernate release (the 3.3.1 bundled with grails 1.3.5) and browsed the hibernate issue tracker. We found the issue and correlated it to the issues HHH-3339 and HHH-5210. Since the fix was simpler than upgrading grails to a new hibernate release we fixed the issue and replaced the jar in our environment. So far, so good, but in our test step 5 still refused to produce a cache hit. Using the debugger strangely enough provided us a cache hit when analyzing the state of the cache and everything. After some more brooding and some println()'s and sleep()‘s we found the reason for the observed behaviour in the UpdateTimestampsCache (yes, yet another cache!):

	public synchronized void preinvalidate(Serializable[] spaces) throws CacheException {
		//TODO: to handle concurrent writes correctly, this should return a Lock to the client
		Long ts = new Long( region.nextTimestamp() + region.getTimeout() );
		for ( int i=0; i
			if ( log.isDebugEnabled() ) {
				log.debug( "Pre-invalidating space [" + spaces[i] + "]" );
			}
			//put() has nowait semantics, is this really appropriate?
			//note that it needs to be async replication, never local or sync
			region.put( spaces[i], ts );
		}
		//TODO: return new Lock(ts);
	}

The innocently looking statement region.nextTimestamp() + region.getTimeout() essentially means that the query cache for a certain “region” (e.g. a table in simple cases) is “invalid” (read: disabled) for some “timeout” period or until the end of the transaction. This period defaults to 60 seconds (yes, one minute!) and renders the query cache useless within a transaction. For many use cases this may not be a problem but our write heavy application really suffers because it works on very few different tables and thus query caching has no effect. We are still discussing ways to leverage hibernates caches to improve the performance of our app.

2 thoughts on “Diving into Hibernate’s Query Cache behaviour

  1. Pingback: How to fix Hibernate Query Cache for Grails 1.3.5 « REWOO Blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s