Explicit types – and when to use them

Many modern programming languages offer a way declare variables without an explicit type if the type can be inferred, either dynamically or statically. Many also allow for variables to be explicitly defined with a type. For example, Scala and C# let you omit the explicit variable type via the var keyword, but both also allow defining variables with explicit types. I’m coming from the C++ world, where “auto” is available for this purpose since the relatively recent C++11. However, people are still debating whether you should actually use it.

Pros

Herb Sutter popularised the almost-always-auto style. He advocates that using more type inference is good because it is roughly equivalent to programming against interfaces instead of implementations. He says that “Overcommitting to explicit types makes code less generic and more interdependent, and therefore more brittle and limited.” However, he also mentions that you might sometimes want to use explicit types.

Now what exactly is overcommiting here? When is the right time to use explicit types?

Cons

Opponents to implicit typing, many of them experienced veterans, often state that they want the actual type visible in the source code. They don’t want to rely on type inference being right. They want the code to explicitly state what’s going on.

At first, I figured that was just conservatism in the face of a new “scary” feature that they did not fully understand. After all, IDEs can usually infer the type on-the-fly and you can hover on a variable to let it show you the type.

For C++, the function signature is a natural boundary where you often insert explicit types, unless you want to commit to the compile time and physical dependency cost that comes with templates. Other languages, such as Groovy, do not have this trade-off and let you skip explicit types almost everywhere. After working with Groovy/Grails for a while, where the dominant style seems to be to omit types whereever possible, it dawned on me that the opponents of implicit typing have a point. Not only does the IDE often fail to show me the inferred type (even though it still works way more often than I would have anticipated), but I also found it harder to follow and modify code that did not mention explicit types. Seemingly contrary to Herb Sutter’s argument, that code felt more brittle than I had liked.

Middle-ground

As usual, the truth seems to be somewhere in the middle. I propose the following rule for when to use explicit types:

  • Explicit typing for domain-types
  • Implicit typing everywhere else

Code using types from the problem domain should be as specific as possible. There’s no need for it to be generic – it’s actually counter-productive, as otherwise the code model would be inconsistent with model of the problem domain. This is also the most important aspect to grok when reading code, so it should be explicit. The type is as important as the action on it.

On the other hand, for pure-fabrication types that do not respresent a concept in the domain, the action is important, while the type is merely a means to achieve this action. Typically, most of the elements from a language’s standard library fall into this category. All your containers, iterators, callables. Their types are merely implementation details: an associative container could be an array, or a hash-map or a tree structure. Exchanging it rarely changes the meaning of the code in the problem domain – it just changes its performance characteristics.

Containers will occasionally contain domain-types in their type. What do you do about those? I think they belong in the “everywhere else” catergory, but you should be take extra care to name the contained type when working with it – for example when declaring the variable of the for-each loop on it, or when inserting something into it. This way, the “collection of domain-type” aspect will become clear, but the specific container implementation will stay implicit – like it should.

What do you think? Is this a useful proposition for your code?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s