C++17: The two line visitor explained

If you have ever used an “idiomatic” C++ variant datatype like Boost.Variant or the new C++17 std::variant, you probably wished you could assemble a visitor to dispatch on the type by assembling a couple of lambda expressions like this:

auto my_visitor = visitor{
  [&](int value) { /* ... */ },
  [&](std::string const& value) { /* ... */ },
};

The code in question

While reading through the code for lager I stumbled upon a curious way to to make this happen. And it is just two lines of code! Wow, that is cool. A comment in the code indicated that the code was copied from cppreference.com where I quickly found the source on the page for std::visit, albeit with a different name:

template<class... Ts> struct overloaded : Ts... { using Ts::operator()...; };
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;

Multiple inheritance to the rescue

Lambda expressions in C++ are just syntactic sugar for callables, pretty much like a struct with an operator(). As such, you can derive from them. which is what the first line does.
It uses variadic templates and multiple inheritance to assemble the types of the lambdas into one type. Without the content in the struct body, an instantiation with our example would be roughly equivalent to this:

struct int_visitor {
  void operator()(int value)
  {/* ... */}
};

struct string_visitor {
  void operator()(std::string const& value)
  {/* ... */}
};

struct visitor : int_visitor, string_visitor {
};

Using all of it

Now this cannot yet be called, as overload resolution (by design) does not work across different types. Hence the using in the structs body. It pulls the operator() implementations into the visitor type where overload resolution can work across all of them.
With it, our hypothetical instantiation becomes:

struct visitor : int_visitor, string_visitor {
  using int_visitor::operator();
  using string_visitor::operator();
};

Now an instance of that type can actually be called with both our types, which is what the interface for, e.g. std::visit demands.

Don’t go without a guide

The second line intruiged me. It looks a bit like a function declaration but that is not what it is. The fact that I had to ask in the (very helpful!) C++ slack made me realize that I did not keep up with the new features in C++17 as much as I would have liked.
This is, in fact, a class template argument deducation (CTAD) guide. It is a new feature in C++17 that allows you do deduce template arguments for a type based on constructor parameters. In a way, it supercedes the Object Generator idiom of old.
The syntax is really quite straight-forward. Given a list of constructor parameter types, resolve to a specific template instance based on those.

Constructing

The last piece of the puzzle is how the visitor gets initialized. The real advantage of using lambdas instead of writing the struct yourself is that you can capture variables from your context. Therefore, you cannot just default-initialize most lambdas – you need to transport its values, its bound context.
In our example, this uses another new C++17 feature: extended aggregate initialization. Aggregate initialization is how you initialized structs way back in C with curly-brackets. Previously, it was forbidden to do this with structs that have a base class. The C++17 extension now lifts this restriction, thus making it possible to initialize this visitor with curly brackets,.

Advertisements

Integrating catch2 with CMake and Jenkins

A few years back, we posted an article on how to get CMake, googletest and jenkins to play nicely with each other. Since then, Phil Nash’s catch testing library has emerged as arguably the most popular thing to write your C++ tests in. I’m going to show how to setup a small sample project that integrates catch2, CMake and Jenkins nicely.

Project structure

Here is the project structure we will be using in our example. It is a simple library that implements left-pad: A utility function to expand a string to a minimum length by adding a filler character to the left.

├── CMakeLists.txt
├── source
│   ├── CMakeLists.txt
│   ├── string_utils.cpp
│   └── string_utils.h
├── externals
│   └── catch2
│       └── catch.hpp
└── tests
    ├── CMakeLists.txt
    ├── main.cpp
    └── string_utils.test.cpp

As you can see, the code is organized in three subfolders: source, externals and tests. source contains your production code. In a real world scenario, you’d probably have a couple of libraries and executables in additional subfolders in this folder.

The source folder

set(TARGET_NAME string_utils)

add_library(${TARGET_NAME}
  string_utils.cpp
  string_utils.h)

target_include_directories(${TARGET_NAME}
  INTERFACE ./)

install(TARGETS ${TARGET_NAME}
  ARCHIVE DESTINATION lib/)

The library is added to the install target because that’s what we typically do with our artifacts.

I use externals as a place for libraries that go into the projects VCS. In this case, that is just the catch2 single-header distribution.

The tests folder

I typically mirror the filename and path of the unit under test and add some extra tag, in this case the .test. You should really not need headers here. The corresponding CMakeLists.txt looks like this:

set(UNIT_TEST_LIST
  string_utils)

foreach(NAME IN LISTS UNIT_TEST_LIST)
  list(APPEND UNIT_TEST_SOURCE_LIST
    ${NAME}.test.cpp)
endforeach()

set(TARGET_NAME tests)

add_executable(${TARGET_NAME}
  main.cpp
  ${UNIT_TEST_SOURCE_LIST})

target_link_libraries(${TARGET_NAME}
  PUBLIC string_utils)

target_include_directories(${TARGET_NAME}
  PUBLIC ../externals/catch2/)

add_test(
  NAME ${TARGET_NAME}
  COMMAND ${TARGET_NAME} -o report.xml -r junit)

The list and the loop help me to list the tests without duplicating the .test tag everywhere. Note that there’s also a main.cpp included which only defines the catch’s main function:

#define CATCH_CONFIG_MAIN
#include <catch.hpp>

The add_test call at the bottom tells CTest (CMake’s bundled test-runner) how to run catch. The “-o” switch commands catch to direct its output to a file, report.xml. The “-r” switch sets the report mode to JUnit format. We will need both to integrate with Jenkins.

The top-level folder

The CMakeLists.txt in the top-level folder needs to call enable_testing() for our setup. Other than that, it just directs to the subfolders via add_subdirectory().

Jenkins

Now all that is needed is to setup Jenkins accordingly. Setup jenkins to get your code, add a “CMake Build” build-step. Hit “Add build tool invocation” and check “Use cmake” to let cmake handle the invocation of your build tool (e.g. make). You also specify the target here, which is typically “install” or “package” via the “–target” switch.

Now you add another step that runs the tests via CTest. Add another Build Step, this time “CMake/CPack/CTest Execution” and pick CTest. The one quirk with this is that it will let the build fail when CTest returns a non-zero exit code – which it does when any tests fail. Usually, you want the build to become unstable and not failed if that happens. Hence set “1-65535” in the “Ignore exit codes” input.

The final step is to let jenkins use the report.xml that we had CTest generate so it can generate the test result charts and tables. To do that, add the post-build action: “Publish JUnit test result report” and point it to tests/report.xml.

Done!

That’s it. Now you got your CI running nice catch tests. The code for this example is available on our github.

4 Tips for better CMake

We are doing one of those list posts again! This time, I will share some tips and insights on better CMake. Number four will surprise you! Let’s hop right in:

Tip #1

model dependencies with target_link_libraries

I have written about this before, and this is still my number one tip on CMake. In short: Do not use the old functions that force properties down the file hierarchy such as include_directories. Instead set properties on the targets via target_link_libraries and its siblings target_compile_definitions, target_include_directories and target_compile_options and “inherit” those properties via target_link_libraries from different modules.

Tip #2

always use find_package with REQUIRED

Sure, having optional dependencies is nice, but skipping on REQUIRED is not the way you want to do it. In the worst case, some of your features will just not work if those packages are not found, with no explanation whatsoever. Instead, use explicit feature-toggles (e.g. using option()) that either skip the find_package call or use it with REQUIRED, so the user will know that another lib is needed for this feature.

Tip #3

follow the physical project structure

You want your build setup to be as straight forward as possible. One way to simplify it is to follow the file system and and the artifact structure of your code. That way, you only have one structure to maintain. Use one “top level” file that does your global configuration, e.g. find_package calls and CPack configuration, and then only defers to subdirectories via add_subdirectory. Only for direct subdirectories though: if you need extra levels, those levels should have their own CMake files. Then build exactly one artifact (e.g. add_executable or add_library) per leaf folder.

Tip #4

make install() an option()

It is often desirable to include other libraries directly into your build process. For example, we usually do this with googletest for our unit test. However, if you do that and use your install target, it will also install the googletest headers. That is usually not what you want! Some libraries handle this automagically by only doing the install() calls when they are the top level project. Similar to the find_package tip above, I like to do this with an option() for explicit user control!

Generating done

That is it for today! I hope this is helps and we will all see better CMake code in the future.

Keeping connections alive with libcurl

libcurl is quite a comfortable option to transfer files across a variety of network protocols, e.g. HTTP, FTP and SFTP.

It’s really easy to get started: downloading a single file via http or ftp takes only a couple of lines.

Drip, drip..

But as with most powerful abstractions, it is a bit leaky. While it does an excellent job of hiding such steps as name resolution and authentication, these steps still “leak out” by increasing the overall run-time.

In our case, we had five dozen FTP servers and we needed to repeatedly download small files from all of them. To make matters worse, we only had a small time window of 200ms for each transfer.

Now FTP is not the most simple protocol. Essentially, it requires the client to establish a TCP control connection, that it uses negotiate a second data connection and initiate file transfers.

This initial setup phase needs a lot of back and forth between server and client. Naturally, this is quite slow. Ideally, you would want to do the connection setup once and keep both the control and the data connection open for subsequent transfers.

libcurl does not explicitly expose the concept of an active connection. Hence you cannot explicitly tell the library not to disconnect it. In a naive implementation, you would download multiple files by simply creating an easy session object for each file transfer:

for (auto file : FILE_LIST)
{
  std::vector<uint8_t> buffer;
  auto curl = curl_easy_init();
  if (!curl)
    return -1;
  auto url = (SERVER+file);
  curl_easy_setopt(curl, CURLOPT_URL,
    url.c_str());
  curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION,
    appendToVector);
  curl_easy_setopt(curl, CURLOPT_WRITEDATA,
    &buffer);
  if (curl_easy_perform(curl) != CURLE_OK)
    return -1;

  process(buffer);
  curl_easy_cleanup(curl);
}

That does indeed reset the connection for every single file.

Re-use!

However, libcurl can actually keep the connection open as part of a connection re-use mechanism in the session object. This is documented with the function curl_easy_perform. If you simply hoist the easy session object out of the loop, it will no longer disconnect between file transfers:

auto curl = curl_easy_init();
if (!curl)
  return -1;

for (auto file : FILE_LIST)
{
  std::vector<uint8_t> buffer;
  auto url = (SERVER+file);
  curl_easy_setopt(curl, CURLOPT_URL, 
    url.c_str());
  curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, 
    appendToVector);
  curl_easy_setopt(curl, CURLOPT_WRITEDATA, 
    &buffer);
  if (curl_easy_perform(curl) != CURLE_OK)
    return -1;

  process(buffer);
}
curl_easy_cleanup(curl);

libcurl will now cache the active connection in the session object, provided the files are actually on the same server. This improved the download timings of our bulk transfers from 130ms-260ms down to 30ms-40ms, quite the enormous gain. The timings now fit into our 200ms time window comfortably.

A Tale of Two Languages

Recently, I presented my mysteriously titled talk “A Tale of Two Languages” at our local C++ user group. Before the talk, I was not really sure whether it would resonate with my audience. But it did, and helped to engage people in a healthy discussion about how to use C++.

Essentially, the talk was about how I am using two different modes or dialects of C++ to write and maintain applications. The title suggests two languages – and it sure can be thought of that way, but for now I’m using the word “modes” to distinguish it from the term programming languages.

You write the application in one mode, while keeping the style relatively easy. In the other mode, you make sure that you can write easy and efficient code in the other, while leveraging the full power of C++.

I call the first application mode and the second library mode.

Library mode

As I said before, this the power mode. One of C++’s design paradigms is self-extension. You are extending the language from the language itself. It’s a very powerful mechanism, the same one that drives the standard library. It’s also why C++ does not have the need for a built-in string type.

This power is a bit of a double-edged sword. On the one hand, it allows you to adapt the language specifically for your needs, for example with application specific value types. For a 3D application, a well designed 2d vector or point type will make your code easier and probably faster. On the other hand, a badly designed type on this level will haunt your application for years to come. I have seen both.

That’s a simple example though. More powerful primitives, such as domain-specific-language like constructs also belong into this mode. In general, things in this mode are less discoverable and less maintainable, but they strive to improve discoverability, efficiency and maintainability on the other side. As a consequence, this code needs more stringent documentation and specification.

Application mode

This is the mode that you use to write the majority of your application. Application mode is all about agility and leveraging opportunities. You intentionally restrict yourself in order to keep your development speed up. Simplicity trumps most other qualities in this mode. If you need another quality to be the defining factor, for example because you need some code to be a little more complex in order to run faster, you should put it into library mode instead.

Unlike code in library mode, this code needs to speak for itself. Therefore, documentation is usually nothing but a duplication.

One important aspect is that this code should be devoid of all subtleties.

Parameter passing and its consequences

That last bit is especially uncommon in C++, where most decisions are really a catch-22. Hence the resulting code hints at the struggles endured while writing it.

For example, to write an efficient function in C++, you need to decide whether to pass each parameter by value, or by reference, or by a pointer. The decision on which to use depends largely on your implementation, i.e. what you are doing with the parameter after it was passed to the function. That usually couples your implementation too tightly to its interface and degrades programmer productivity by giving too many options.

Using a shared-ownership smart-pointer such as std::shared_ptr by default is a good middle ground here. It does the right thing most of the time and is not to far off at most other times. Many other mainstream languages, such as python, go this route. Some frameworks, such as Qt, use that semantic as well.
Like const-correctness, passing all parameters in a std::shared_ptr is viral. Object thus passed need to be created on a the stack, preferably with std::make_shared. You will also store those smart pointers in other objects, so shared_ptr will have quite a lot of screen space. Therefore I usually make an alias:

template using Ptr = std::shared_ptr;

If it’s going to be the default, it should not clutter your code. Since objects are transported in a Ptr by default, they usually do not even need a copy constructor or other “value-like” semantics. These objects are less about maintaining invariants, and more about implementing abstract interfaces and bundling functionality in maintainable chunks. I usually use boost::noncopyable to mark them, though Herb Sutter’s Metaclasses proposal could make this even nicer.
Note that you can still promote them to value types in library mode, should the need arise. But they will become more costly to maintain.

Other simplifications

There are plenty of other things to avoid in application mode. Writing templated types makes your code inherently non-local and dependent on a type that can be anywhere. Note that instantiation of templates from library mode is fine – at that point, all the facts are known.

Another thing that makes your code non-local, and therefore unfitting for application mode, is overloading. Especially in the presence of ADL. For example, which functions are in your actual overload set depends on which headers you include and which using-directives and declarations are active. Sometimes, that is desirable. But not in application mode.

Resolution

Since using this “two modes” approach, I have found that my productivity is much higher – even in older code that went through a lot of evolution. The code does not actually get a lot slower, even with all the smart pointers. In fact, I am sure that I could only optimize a few cases because the design in application mode is a lot more flexible, and the structure more visible.

C++ modules example

Two weeks back, I blogged about C++ modules, and why we so desperately need them. Now I have actually played with the implementation in Visual Studio 2017, and I want to share my findings.

The Files

My example consists of four files in two “components”, i.e. one library and one executable. The executable only has one file, main.cpp:

import pets;
import std.core;
import std.memory;

int main()
{
  std::unique_ptr<Pet> pet = std::make_unique<Dog>();
  std::cout << "Pet says: "
    << pet->pet() << std::endl;
}

The library consists of three files. First is pet.cpp, which contains the abstract base class for all pets:

import std.core;
module pets.pet;

export class Pet
{
public:
  virtual char const* pet() = 0;
};

Then there is dog.cpp – our only concrete implementation of that base class (yes, I’m not a cat person).

module pets.dog;
import std.core;
import pets.pet;

export class Dog : public Pet
{
public:
  char const* pet() override;
};

char const* Dog::pet()
{
  return "Woof!";
}

Notice they each define their own submodule. Finally, there is interface.cpp, which just cobbles those submodules together into one single “parent” module:

module pets;

export module pets.pet;
export module pets.dog;

You can get the full source code including the CMake setup at our github repository. I was not able to get the standard library path setup automated so far, so you probably want to adjust that.

Discussion

There are no headers at all, which was one of my goals of laying it out like this. I think that alone means an enormous increase in productivity.

The information that was previously in the header files is now in .ifc files that the microsoft compiler generates automatically from the module definitions.
When trying this out, a couple of things stood out to me:

  • Intellisense does not work with the new keywords yet.
  • The way I used it, interface.cpp needs to be compiled after pet.cpp and dog.cpp, so that the appropriate .ifc file exists. Having an order dependency like that within a single library is a new challenge.
  • I was not able to use the standard lib in the library. That would compile, but not link.
  • Not having to duplicate the function declaration feels very strange in C++.
  • There are a lot of paradigm changes required. For example, include paths are a thing of the past – you will need to configure correct module search paths in the future.
  • We will need to get the naming straight: right now, “modules” is already used as a “distinct software component”. The new meaning is similar, but still competes with it. since the granularity is no longer so flexible. I already started using “components” as a new word for the former.

What are your experiences with modules so far? Do you have another way of composing modules? I really like to hear about it! I think the biggest challenge right now is how to use these new possibilities to improve the design of bigger C++ projects.

C++ modules and why we need them desperately

When I was interviewing for my job here at the Softwareschneiderei, I was asked a question:

“If you had one wish for what to add to C++, what would that be?”.

I vividly remember not having to give a lot of thought to answer that: modules. And now, it seems modules for C++ are finally materializing. About damn time.

The Past: Hello Preprocessor, my old friend

C++ has a problem with scalability. Traditionally, the only real way to use code from another compile unit, is to use header files and “use” them via preprocessor #include directives. This requires splitting your code into a header and implementation file, which requires duplicating a lot of information. And it does not even work for a lot of code. Templates need to be in the header, and a lot of modern C++ code is template code. This is descreasing uniformity and coherence of the code.
When resolving #include directives, the preprocessor really only copy-and-paste code from one file into another. Since this is a transitive process, the actual code that gets analyzed by the compiler quickly becomes huge.

Hello World?

Do this little experiment: write a simple C++ “Hello World!” program, and look at the preprocessed output.

#include <iostream>

int main()
{
  std::cout << "Hello, World!" << std::endl;
  return 0;
}

I preprocessed this simple version with Visual Studio 2017. The output was about 50500 lines! That’s more than 7200x. Now repeat that while including something from Boost. Still wonder why compilation is so slow?

Pay for what you use?

So if you include a header, you not only get the things you want from it, but also everything else. That means all the other contents of the header and all the headers it includes transitively. Usually, the number of transitively included headers counts over 10000 very quickly. This goes directly against C++’s design mantra: pay only for what you use.

The code that gets included is usually orders of magnitude more than the actual contents of your .cpp file, even in examples not as contrived as the “Hello, World!” above.

This means a lot of extra code for your toolchain to analyze.
And the work is duplicated for each compile unit.
This is obviously slow.

Leaks everywhere..

But it also means your modules are leaking. For example its dependencies: Some of your users will inadvertently use the code that you use, and if you change your dependency, they will break. How often have you used std::runtime_error without actually including stdexcept? Many C++ programmers do not even know which header a particular stdlib feature is located in. Not their fault really – it’s hard enough to memorize the contents alone without their locations in an arbitrary M:N mapping.

But dependencies are not the only things that are leaking. By exposing individual headers, you make clients dependent on the physical structure of your program as well. Moving one type from one header to another? You can not do that, unless you want to break a couple of clients.

Current workarounds

The C++ community has had different approaches on how to deal with the fallout.

  • Forward declarations and the PIMPL idiom let you break the transitive dependencies.
    But a forward declaration is a very subtle code duplication, and a PIMPL even creates runtime overhead.
  • Unity builds tackle problem of resolving your include graph multiple times, but at the cost of an obscure extension to your build system and negative impacts for incremental builds.
  • Meta-headers tackle to problem of more clearly defined module boundaries, but they make the compile time worse and make it harder to explore modules.

It’s a catch 22.

Tool support

Because macros leak in and out of headers, semantic analysis becomes very hard. In fact, a tool needs to understand the program in its entirety, including all source and build files to properly refactor. After all, each define given on a command line, or even each reordering (!) of #include files could potentially alter the semantics completely. Every line of code in a header can change its meaning completely depending on its context.

There are also techniques that abuse this feature, i.e. cross-includes, where an include does something based on a previous #define. Granted, only a small percentage of code is usually directly affected by such subtleties, but there is currently no way to properly isolate from it. That is why refactoring and introspection tools for other languages are so much better.

State of the union

The modules proposal is spearheaded by Gabriel Dos Reis at Microsoft. There’s an in-progress implementation of it since Visual Studio 2015, and they are still regularly updating it, so the most recent one is in VS 2017. If you want to know more, have a look at this video.