Integrating catch2 with CMake and Jenkins

A few years back, we posted an article on how to get CMake, googletest and jenkins to play nicely with each other. Since then, Phil Nash’s catch testing library has emerged as arguably the most popular thing to write your C++ tests in. I’m going to show how to setup a small sample project that integrates catch2, CMake and Jenkins nicely.

Project structure

Here is the project structure we will be using in our example. It is a simple library that implements left-pad: A utility function to expand a string to a minimum length by adding a filler character to the left.

├── CMakeLists.txt
├── source
│   ├── CMakeLists.txt
│   ├── string_utils.cpp
│   └── string_utils.h
├── externals
│   └── catch2
│       └── catch.hpp
└── tests
    ├── CMakeLists.txt
    ├── main.cpp
    └── string_utils.test.cpp

As you can see, the code is organized in three subfolders: source, externals and tests. source contains your production code. In a real world scenario, you’d probably have a couple of libraries and executables in additional subfolders in this folder.

The source folder

set(TARGET_NAME string_utils)

add_library(${TARGET_NAME}
  string_utils.cpp
  string_utils.h)

target_include_directories(${TARGET_NAME}
  INTERFACE ./)

install(TARGETS ${TARGET_NAME}
  ARCHIVE DESTINATION lib/)

The library is added to the install target because that’s what we typically do with our artifacts.

I use externals as a place for libraries that go into the projects VCS. In this case, that is just the catch2 single-header distribution.

The tests folder

I typically mirror the filename and path of the unit under test and add some extra tag, in this case the .test. You should really not need headers here. The corresponding CMakeLists.txt looks like this:

set(UNIT_TEST_LIST
  string_utils)

foreach(NAME IN LISTS UNIT_TEST_LIST)
  list(APPEND UNIT_TEST_SOURCE_LIST
    ${NAME}.test.cpp)
endforeach()

set(TARGET_NAME tests)

add_executable(${TARGET_NAME}
  main.cpp
  ${UNIT_TEST_SOURCE_LIST})

target_link_libraries(${TARGET_NAME}
  PUBLIC string_utils)

target_include_directories(${TARGET_NAME}
  PUBLIC ../externals/catch2/)

add_test(
  NAME ${TARGET_NAME}
  COMMAND ${TARGET_NAME} -o report.xml -r junit)

The list and the loop help me to list the tests without duplicating the .test tag everywhere. Note that there’s also a main.cpp included which only defines the catch’s main function:

#define CATCH_CONFIG_MAIN
#include <catch.hpp>

The add_test call at the bottom tells CTest (CMake’s bundled test-runner) how to run catch. The “-o” switch commands catch to direct its output to a file, report.xml. The “-r” switch sets the report mode to JUnit format. We will need both to integrate with Jenkins.

The top-level folder

The CMakeLists.txt in the top-level folder needs to call enable_testing() for our setup. Other than that, it just directs to the subfolders via add_subdirectory().

Jenkins

Now all that is needed is to setup Jenkins accordingly. Setup jenkins to get your code, add a “CMake Build” build-step. Hit “Add build tool invocation” and check “Use cmake” to let cmake handle the invocation of your build tool (e.g. make). You also specify the target here, which is typically “install” or “package” via the “–target” switch.

Now you add another step that runs the tests via CTest. Add another Build Step, this time “CMake/CPack/CTest Execution” and pick CTest. The one quirk with this is that it will let the build fail when CTest returns a non-zero exit code – which it does when any tests fail. Usually, you want the build to become unstable and not failed if that happens. Hence set “1-65535” in the “Ignore exit codes” input.

The final step is to let jenkins use the report.xml that we had CTest generate so it can generate the test result charts and tables. To do that, add the post-build action: “Publish JUnit test result report” and point it to tests/report.xml.

Done!

That’s it. Now you got your CI running nice catch tests. The code for this example is available on our github.

Advertisements

Simple build triggers with secured Jenkins CI

The jenkins continuous integration (CI) server provides several ways to trigger builds remotely, for example from a git hook. Things are easy on an open jenkins instance without security enabled. It gets a little more complicated if you like to protect your jenkins build environment.

Git plugin notify commit url

For git there is the “notifyCommitUrl” you can use in combination with the Poll SCM settings:

$JENKINS_URL/git/notifyCommit?url=http://$REPO/project/myproject.git

Note two things regarding this approach:

  1. The url of the source code repository given as a parameter must match the repository url of the jenkins job.
  2. You have to check the Poll SCM setting, but you do not need to provide a schedule

Another drawback is its restriction to git-hosted jobs.

Jenkins remote access api

Then there is the more general and more modern jenkins remote access api, where you may trigger builds regardless of the source code management system you use.
curl -X POST $JENKINS_URL/job/$JOB_NAME/build?token=$TOKEN

It allows even triggering parameterized builds with HTTP POST requests like:

curl -X POST $JENKINS_URL/job/$JOB_NAME/build \
--user USER:TOKEN \
--data-urlencode json='{"parameter": [{"name":"id", "value":"123"}, {"name":"verbosity", "value":"high"}]}'

Both approaches work great as long as your jenkins instance is not secured and everyone can do everything. Such a setting may be fine in your companies intranet but becomes a no-go in more heterogenious environments or with a public jenkins server.

So the way to go is securing jenkins with user accounts and restricted access. If you do not want to supply username/password as part of the url for doing HTTP BASIC auth and create users just for your repository triggers there is another easy option:

Using the Build Authorization Token Root Plugin!

Build authorization token root plugin

The plugin introduces a configuration setting in the Build triggers section to define an authentication token:

It also exposes a url you can access without being logged in to trigger builds just providing the token specified in the job:

$JENKINS_URL/buildByToken/build?job=$JOB_NAME&token=$TOKEN

Or for parameterized builds something like:

$JENKINS_URL/buildByToken/buildWithParameters?job=$JOB_NAME&token=$TOKEN&Type=Release

Conclusion

The token root plugin does not need HTTP POST requests but also works fine using HTTP GET. It does neither requires a user account nor the awkward Poll SCM setting. In my opinion it is the most simple and pragmatic choice for build triggering on a secured jenkins instance.

Modern developer Issue #2: RPM like deployment on Windows

Deployment is a crucial step in every development project. Without shipping no one would ever see our work (and we get no feedback if our work is good).

drawer

Often we fear deploying to production because of the effort involved and the errors we make. Questions like ‘what if we forget a step?’ or ‘what if the new version we install is buggy?’ buzz in our mind.

fears

Deployment needs to be a non-event, a habit. For this we need to automate every step besides the first one: clicking a button to start deployment.

deploy

On Linux we have wonderful tools for this but what if you are stuck with deploying to Windows?

brave

Fear not, brave developer! Even on Windows we can use a package manager to install and rollback buggy versions. Let me introduce you to chocolatey.

choco

Chocolatey (or choco in short) uses the common NuGet package format. Formerly developed for the .net platform we can use it for other platforms, too. In our following example we use a simple Java application which we install as a service and as a task.
Setting up we need a directory structure for the package like this:

folders

We need to create two files: one which specifies our package (my_project.nuspec) and one script which holds the deployment steps (chocolateyinstall.ps1). The specification file holds things like the package name, the package version (which can be overwritten when building the package), some pointers to project, source and license URLs. We can configure files and directories which will be copied to the package: in our example we use a directory containing our archives (aptly named archives) and a directory containing the installation steps (named tools). Here is a simple example:

<?xml version="1.0" encoding="utf-8"?>
<!-- Do not remove this test for UTF-8: if “Ω” doesn’t appear as greek uppercase omega letter enclosed in quotation marks, you should use an editor that supports UTF-8, not this one. -->
<package xmlns="http://schemas.microsoft.com/packaging/2015/06/nuspec.xsd">
  <metadata>
    <id>my_project</id>
    <title>My Project (Install)</title>
    <version>0.1</version>
    <authors>Me</authors>
    <owners>Me</owners>
    <summary></summary>
    <description>Just an example</description>
    <projectUrl>http://localhost/my_project</projectUrl>
    <packageSourceUrl>http://localhost/git</packageSourceUrl>
    <tags>example</tags>
    <copyright>My company</copyright>
    <licenseUrl>http://localhost/license</licenseUrl>
    <requireLicenseAcceptance>false</requireLicenseAcceptance>
    <releaseNotes></releaseNotes>
  </metadata>
  <files>
    <file src="tools\**" target="tools" />
    <file src="archives\**" target="archives" />
  </files>
</package>

This file tells choco how to build the packages and what to include. For the deployment process we need a script file written in Powershell.

powershell

A Powershell primer

Powershell is not as bad as you might think. Let’s take a look at some basic Powershell syntax.

Variables

Variables are started with a $ sign. As in many other languages ‘=’ is used for assignments.

$ErrorActionPreference = 'Stop'

Strings

Strings can be used with single (‘) and double quotes (“).

$serviceName = 'My Project'
$installDir = "c:\examples"

In double quoted strings we can interpolate by using a $ directly or with curly braces.

$packageDir = "$installDir\my_project"
$packageDir = "${installDir}\my_project"

For escaping double quotes inside a double quoting string we need back ticks (`)

"schtasks /end /f /tn `"${serviceName}`" "

Multiline strings are enclosed by @”

$cmdcontent = @"
cd /d ${packageDir}
java -jar ${packageName}.jar >> output.log 2>&1
"@

Method calls

Calling methods looks a mixture of command line calls with uppercase names.

Write-Host "Stopping and deleting current version of ${packageName}"
Get-Date -format yyyyddMMhhmm
Copy-Item $installFile $packageDir

Some helpful methods are:

  • Write-Host or echo: for writing to the console
  • Get-Date: getting the current time
  • Split-Path: returning the specified part of a path
  • Join-Path: concatenating a path with a specified part
  • Start-Sleep: pause n seconds
  • Start-ChocolateyProcessAsAdmin: starting an elevated command
  • Get-Service: retrieving a Windows service
  • Remove-Item: deleting a file or directory
  • Test-Path: testing for existence of a path
  • New-Item: creating a file or directory
  • Copy-Item: copying a file or directory
  • Set-Content: creating a file with the specified contents
  • Out-Null: swallowing output
  • Resolve-Path: display the path after resolving wildcards

The pipe (|) can be used to redirect output.

Conditions

Conditions can be evaluated with if:

if ($(Get-Service "$serviceName" -ErrorAction SilentlyContinue).Status -eq "Running") {
}

-eq is used for testing equality. -ne for difference.

Deploying with Powershell

For installing our package we need to create the target directories and copy our archives:

$packageName = 'myproject'
$installDir = "c:\examples"
$packageDir = "$installDir\my_project"

Write-Host "Making sure $installDir is in place"
if (!(Test-Path -path $installDir)) {New-Item $installDir -Type Directory  | Out-Null}

Write-Host "Making sure $packageDir is in place"
if (!(Test-Path -path $packageDir)) {New-Item $packageDir -Type Directory  | Out-Null}

Write-Host "Installing ${packageName} to ${packageDir}"
Copy-Item $installFile $packageDir

When reinstalling we first need to delete existing versions:

$installDir = "c:\examples"
$packageDir = "$installDir\my_project"

if (Test-Path -path $packageDir) {
  Remove-Item -recurse $(Join-Path $packageDir "\*") -exclude *.conf, *-bak*, *-old*
}

Now we get to the meat creating a Windows service.

$installDir = "c:\examples"
$packageName = 'myproject'
$serviceName = 'My Project'
$packageDir = "$installDir\my_project"
$cmdFile = "$packageDir\$packageName.cmd"

if (!(Test-Path ($cmdFile)))
{
    $cmdcontent = @"
cd /d ${packageDir}
java -jar ${packageName}.jar >> output.log 2>&1
"@
    echo "Dropping a ${packageName}.cmd file"
    Set-Content $cmdFile $cmdcontent -Encoding ASCII -Force
}

if (!(Get-Service "${serviceName}" -ErrorAction SilentlyContinue))
{
  echo "No ${serviceName} Service detected"
  echo "Installing ${serviceName} Service"
  Start-ChocolateyProcessAsAdmin "install `"${serviceName}`" ${cmdFile}" nssm
}

Start-ChocolateyProcessAsAdmin "set `"${serviceName}`" Start SERVICE_DEMAND_START" nssm

First we need to create a command (.cmd) file which starts our java application. Installing a service calling this command file is done via a helper called nssm. We set it to starting manual because we want to start and stop it periodically with the help of a task.

For enabling a reinstall we first stop an existing service.

$installDir = "c:\examples"
$serviceName = 'My Project'
$packageDir = "$installDir\my_project"

if (Test-Path -path $packageDir) {
  Write-Host $(Get-Service "$serviceName" -ErrorAction SilentlyContinue).Status

  if ($(Get-Service "$serviceName" -ErrorAction SilentlyContinue).Status -eq "Running") {
    Start-ChocolateyProcessAsAdmin "Stop-Service `"${serviceName}`""
    Start-Sleep 2
  }
}

Next we install a task with help of the build in schtasks command.

$serviceName = 'My Project'
$installDir = "c:\examples"
$packageDir = "$installDir\my_project"
$cmdFile = "$packageDir\$packageName.cmd"

echo "Installing ${serviceName} Task"
Start-ChocolateyProcessAsAdmin "schtasks /create /f /ru system /sc hourly /st 00:30 /tn `"${serviceName}`" /tr  `"$cmdFile`""

Stopping and deleting the task enables us to reinstall.

$packageName = 'myproject'
$serviceName = 'My Project'
$installDir = "c:\examples"
$packageDir = "$installDir\my_project"

if (Test-Path -path $packageDir) {
  Write-Host "Stopping and deleting current version of ${packageName}"
  Start-ChocolateyProcessAsAdmin "schtasks /delete /f /tn `"${serviceName}`" "
  Start-Sleep 2
  Start-ChocolateyProcessAsAdmin "schtasks /end /f /tn `"${serviceName}`" "
  Remove-Item -recurse $(Join-Path $packageDir "\*") -exclude *.conf, *-bak*, *-old*
}

tl;dr

Putting it all together looks like this:

$ErrorActionPreference = 'Stop'; # stop on all errors

$packageName = 'myproject'
$serviceName = 'My Project'
$installDir = "c:\examples"
$packageDir = "$installDir\my_project"
$cmdFile = "$packageDir\$packageName.cmd"
$currentDatetime = Get-Date -format yyyyddMMhhmm
$scriptDir = "$(Split-Path -parent $MyInvocation.MyCommand.Definition)"
$installFile = (Join-Path $scriptDir -ChildPath "..\archives\$packageName.jar") | Resolve-Path


if (Test-Path -path $packageDir) {
  Write-Host "Stopping and deleting current version of ${packageName}"
  Start-ChocolateyProcessAsAdmin "schtasks /delete /f /tn `"${serviceName}`" "
  Start-Sleep 2
  Start-ChocolateyProcessAsAdmin "schtasks /end /f /tn `"${serviceName}`" "
  Remove-Item -recurse $(Join-Path $packageDir "\*") -exclude *.conf, *-bak*, *-old*

  Write-Host $(Get-Service "$serviceName" -ErrorAction SilentlyContinue).Status

  if ($(Get-Service "$serviceName" -ErrorAction SilentlyContinue).Status -eq "Running") {
    Write-Host "Stopping and deleting current version of ${packageName}"
    Start-ChocolateyProcessAsAdmin "Stop-Service `"${serviceName}`""
    Start-Sleep 2
  }

  if ($(Get-Service "$serviceName"  -ErrorAction SilentlyContinue).Status -ne "Running") {
    Write-Host "Cleaning ${packageDir} directory"
    Remove-Item -recurse $(Join-Path $packageDir "\*") -exclude *.conf, *-bak*, *-old*
  }
}
 
Write-Host "Making sure $installDir is in place"
if (!(Test-Path -path $installDir)) {New-Item $installDir -Type Directory  | Out-Null}

Write-Host "Making sure $packageDir is in place"
if (!(Test-Path -path $packageDir)) {New-Item $packageDir -Type Directory  | Out-Null}

Write-Host "Installing ${packageName} to ${packageDir}"
Copy-Item $installFile $packageDir

if (!(Test-Path ($cmdFile)))
{
    $cmdcontent = @"
cd /d ${packageDir}
java -jar ${packageName}.jar >> output.log 2>&1
"@
    echo "Dropping a ${packageName}.cmd file"
    Set-Content $cmdFile $cmdcontent -Encoding ASCII -Force
}

if (!(Get-Service "${serviceName}" -ErrorAction SilentlyContinue))
{
  echo "No ${serviceName} Service detected"
  echo "Installing ${serviceName} Service"
  Start-ChocolateyProcessAsAdmin "install `"${serviceName}`" ${cmdFile}" nssm
}

Start-ChocolateyProcessAsAdmin "set `"${serviceName}`" Start SERVICE_DEMAND_START" nssm

echo "Installing ${serviceName} Task"
Start-ChocolateyProcessAsAdmin "schtasks /create /f /ru system /sc hourly /st 00:30 /tn `"${serviceName}`" /tr  `"$cmdFile`""

Finally

Now we just need to create the package in our build script. The package will be named my_project.version.nupkg.
On our build machine we need to install choco. On the target machine we need the following tools installed:
chocolatey and nssm (for service management). Now we can create the package with:

  choco pack --version=${version}

Copy it to the target machine and install the current version with:

choco install -f -y c:\\installations\\${archive.name} --version=${version}

Put these steps inside a build script and use your favourite contininuous integration platform and voila.
Done.

deploy

Using passwords with Jenkins CI server

For many of our projects the Jenkins continuous integration (CI) server is one important cornerstone. The well known “works on my machine” means nothing in our company. Only code in repositories and built, tested and packaged by our CI servers counts. In addition to building, testing, analyzing and packaging our projects we use CI jobs for deployment and supervision, too. In such jobs you often need some sort of credentials like username/password or public/private keys.

If you are using username/password they do not only appear in the job configuration but also in the console build logs. In most cases this is undesirable but luckily there is an easy way around it: using the Environment Injector Plugin.

In the plugin you can “inject passwords to the build as environment variables” for use in your commands and scripts.inject-passwords-configuration

The nice thing about this is that the passwords are not only masked in the job configuration (like above) but also in the console logs of the builds!inject-passwords-console-log

Another alternative doing mostly the same is the Credentials Binding Plugin.

There is a lot more to explore when it comes to authentication and credential management in Jenkins as you can define credentials at the global level, use public/private key pairs and ssh agents, connect to a LDAP database and much more. Just do not sit back and provide security related stuff plaintext in job configurations or your deployments scripts!

Monitoring data integrity with health checks

An important aspect for systems, which are backed by a database storage, is to maintain data integrity. Most relational databases offer the possibility to define constraints in order to maintain data integrity, usually referential integrity and entity integrity. Typical constraints are foreign key constraints, not-null constraints, unique constraints and primary key constraints.

SQL also provides the CHECK constraint, which allows you to specify a condition on each row in a table:

ALTER TABLE table_name ADD CONSTRAINT
   constraint_name CHECK ( predicate )

For example:

CHECK (AGE >= 18)

However, these check constraints are limited. They can’t be defined on views, they can’t refer to columns in other tables and they can’t include subqueries.

Health checks

In order to monitor data integrity on a higher level that is closer to the business rules of the domain, we have deployed a technique that we call health checks in some of our applications.

These health checks are database queries, which check that certain constraints are met in accordance with the business rules. The queries are usually designed to return an empty result set on success and to return the faulty data records otherwise.

The health checks are run periodically. For example, we use a Jenkins job to trigger the health checks of one of our web applications every couple of hours. In this case we don’t directly query the database, but the application does and returns the success or failure states of the health checks in the response of a HTTP GET request.

This way we can detect problems in the stored data in a timely manner and take countermeasures. Of course, if the application is bug free these health checks should never fail, and in fact they rarely do. We mostly use the health checks as an addition to regression tests after a bug fix, to ensure and monitor that the unwanted state in the data will never happen again in the future.

MSBuild Basics

MSBuild is Microsoft’s build system for Visual Studio. Visual Studio project files (*.csproj, *.vbproj) do not only describe the project structure, but are also build scripts for MSBuild. They’re executed when you click the run button in the IDE, but they can also be called via the MSBuild command line utility.

> MSBuild.exe Project.csproj

These project files / build scripts are in XML format, comparable to Ant scripts in the Java land.

Edit project files

You can edit these files in any text editor, of course. But if you want to edit them within Visual Studio, you have to unload the project first:

  • Right click on the project in the Solution Explorer -> Unload Project
  • Right click on the project in the Solution Explorer -> Edit MyProject.csproj

After you’re done editing you can reload the project again via the context menu.

Targets and tasks

The concepts of MSBuild are comparable to many other build systems: a build script contains a set of named targets, and each target consists of a sequence of task calls.

A project can have one or more default targets, referenced by the DefaultTargets attribute of the Project root element:

<Project DefaultTargets="Build" ...>

Multiple targets can be separated by semicolons.

Targets are declared via Target tags containig the task calls:

  <Target Name="Clean">
    <Delete Files="xyz.tmp" />
    ...
  </Target>

MSBuild comes with a set of common tasks, such as Message, Copy, Delete, Exec, …

If you need more tasks you should have a look at these community provided task collections:

Both are available as NuGet packages and can be checked into your code repository alongside the project for self-containment. For the Extension Pack you have to set the ExtensionTasksPath property correctly before importing the tasks, for example:

<PropertyGroup>
  <ExtensionTasksPath Condition="'$(ExtensionTasksPath)' == ''">$(MSBuildProjectDirectory)\packages\MSBuild.Extension.Pack.1.5.0\tools\net40</ExtensionTasksPath>
</PropertyGroup>

<Import Project="$(ExtensionTasksPath)MSBuild.ExtensionPack.tasks">

Properties

Properties are defined within PropertyGroup tags, containing one or many property tags. The names of these tags are the property names and the tag contents are the property values. Properties are referenced via $(PropertyName). A property definition can have an optional Condition attribute, which determines whether a property should be set or not. The condition ‘$(PropertyName)’ == ”, for example, checks if a property is not yet set.

Here’s an example build target that uses the ZIP compression task from the Extension Pack and some properties to create a ZIP file artifact from the build results:

<Target Name="AfterBuild">
  <MSBuild.ExtensionPack.Compression.Zip TaskAction="Create" CompressPath="$(OutputPath)" ZipFileName="bin\$(ProjectName)-$(BuildNumber).zip" />
</Target>

You can also set property values from the outside via the MSBuild call:

> MSBuild.exe /t:Build /p:Configuration=Release;BuildNumber=1234 Project.csproj

  • The /t switch determines which targets to run. Multiple targets can be separated by semicolons.
  • The /p switch sets properties in the form of PropertyName=value, also separated by semicolons.

This way you can pass environment variables like $BUILD_NUMBER from your Continuous Integration system (e.g. Jenkins) to your build script:

> MSBuild.exe /t:Build /p:Configuration=Release;BuildNumber=$BUILD_NUMBER Project.csproj

Now you could use the MSBuild.ExtensionPack.Framework.AssemblyInfo task to write the $(BuildNumber) property into your AssemblyInfo file.

Integrating googletest in CMake-based projects and Jenkins

In my – admittedly limited – perception unit testing in C++ projects does not seem as widespread as in Java or the dynamic languages like Ruby or Python. Therefore I would like to show how easy it can be to integrate unit testing in a CMake-based project and a continuous integration (CI) server. I will briefly cover why we picked googletest, adding unit testing to the build process and publishing the results.

Why we chose googletest

There are a plethora of unit testing frameworks for C++ making it difficult to choose the right one for your needs. Here are our reasons for googletest:

  • Easy publishing of result because of JUnit-compatible XML output. Many other frameworks need either a Jenkins-plugin or a XSLT-script to make that work.
  • Moderate compiler requirements and cross-platform support. This rules out xUnit++ and to a certain degree boost.test because they need quite modern compilers.
  • Easy to use and integrate. Since our projects use CMake as a build system googletest really shines here. CppUnit fails because of its verbose syntax and manual test registration.
  • No external dependencies. It is recommended to put googletest into your source tree and build it together with your project. This kind of self-containment is really what we love. With many of the other frameworks it is not as easy, CxxTest even requiring a Perl interpreter.

Integrating googletest into CMake project

  1. Putting googletest into your source tree
  2. Adding googletest to your toplevel CMakeLists.txt to build it as part of your project:
    add_subdirectory(gtest-1.7.0)
  3. Adding the directory with your (future) tests to your toplevel CMakeLists.txt:
    add_subdirectory(test)
  4. Creating a CMakeLists.txt for the test executables:
    include_directories(${gtest_SOURCE_DIR}/include)
    set(test_sources
    # files containing the actual tests
    )
    add_executable(sample_tests ${test_sources})
    target_link_libraries(sample_tests gtest_main)
    
  5. Implementing the actual tests like so (@see examples):
    #include "gtest/gtest.h"
    
    TEST(SampleTest, AssertionTrue) {
        ASSERT_EQ(1, 1);
    }
    

Integrating test execution and result publishing in Jenkins

  1. Additional build step with shell execution containing something like:
    cd build_dir && test/sample_tests --gtest_output="xml:testresults.xml"
  2. Activate “Publish JUnit test results” post-build action.

Conclusion

The setup of a unit testing environment for a C++ project is easier than many developers think. Using CMake, googletest and Jenkins makes it very similar to unit testing in Java projects.