CSS 3D transforms

If you are like me when thinking about 3D in the browser you immediately speak of WebGL. But what most developers forget is that we use simple 3D mechanism in our web sites and applications already: the z-index.
While the z-index in only stacking flat containers above each other. Almost all modern browsers can use CSS to create simple 3D models.
Let’s start with a cuboid.

<div class="container">
  <div id="cuboid">
    <div class="front">1</div>
    <div class="back">2</div>
    <div class="right">3</div>
    <div class="left">4</div>
    <div class="top">5</div>
    <div class="bottom">6</div>
  </div>
</div>

We have 6 sides and for easier recognizing each one each has a number on it. We make them bigger and give them a different background to distinguish them further.

.container {
  width: 300px;
  height: 300px;
  position: relative;
  margin: 0 auto 40px;
  padding-top: 100px;
}

#cuboid {
  width: 100%;
  height: 100%;
  position: absolute;
}

#cuboid div {
  display: block;
  position: absolute;
  border: 2px solid black;
  line-height: 196px;
  font-size: 120px;
  font-weight: bold;
  color: white;
  text-align: center;
}

Until now we didn’t use any 3D transformations. For ordering the sides we rotate and translate each side in its place.

    #cuboid .front  { transform: translateZ(100px); }
    #cuboid .back   { transform: rotateX(-180deg) translateZ(0px); }
    #cuboid .right  { transform: rotateY(90deg) translateZ(150px) translateX(-50px); }
    #cuboid .left   { transform: rotateY(-90deg) translateZ(50px) translateX(50px); }
    #cuboid .top    { transform: rotateX(90deg) translateZ(50px) translateY(50px); }
    #cuboid .bottom { transform: rotateX(-90deg) translateZ(200px) translateY(-50px); }

This brought the back side on top but no 3D visible yet. Further we tell the browser to use 3d on its children and move the scene a bit out.

#cuboid {
  transform-style: preserve-3d;
  transform: translateZ( -100px );
}

Still we are trapped in flatland. Ah we are looking straight onto the front. So we rotate the scene.

#cuboid {
  transform-style: preserve-3d;
  transform: translateZ( -100px ) rotateX(20deg) rotateY(20deg);
}

Now we have depth. Something is quite not right. If we remember one thing from our OpenGL days we need another ingredient to make it look 3D: a perspective.

.container {
  perspective: 1200px;
}

Last but not least we add animation to see it spinning.

#cuboid {
  transform-style: preserve-3d;
  transform: translateZ(-100px) rotateX(20deg) rotateY(20deg);
  animation: spinCuboid 5s infinite ease-out;
}
@keyframes spinCuboid {
  0% { transform: translateZ(-100px) rotateX(0deg) rotateY(0deg); }
  100% { transform: translateZ(-100px) rotateX(360deg) rotateY(360deg); }
}

The Great Rational Explosion

A Dream to good to be true

A few years back I was doing mostly computational geometry for a while. In that field, floating point errors are often of great concern. Some algorithms will simply crash or fail when it’s not taken into account. Back then, the idea of doing all the required math using rationals seemed very alluring.
For the uninitiated: a good rational type based on two integers, a numerator and a denominator allows you to perform the basic math operations of addition, subtraction, multiplication and division without any loss of precision. Doing all the math without any loss of precision, without fuzzy comparisons, without imperfection.
Alas, I didn’t have a good rational type available at the time, so the thought remained in the realm of ideas.

A Dream come true?

Fast forward a couple of years to just two months ago. We were starting a new project and set ourselves the requirement of not introducing floating point errors. Naturally, I immediately thought of using rationals. That project is written in java and already using jscience, which happens to have a nice Rational type. I expected the whole thing to be a bit slower than math using build-in types. But not like this.
It seemed like a part that was averaging about 2000 “count rate” rationals was extremely slow. It seemed to take about 13 seconds, which we thought was way too much. Curiously, the problem never appeared when the count rate was zero. Knowing a little about the internal workings of rational, I quickly suspected the summation to be the culprit. But the code was doing a few other things to, so naturally my colleagues demanded proof that that was indeed the problem. Hence I wrote a small demo application to benchmark the problem.

The code that I measured was this:

Rational sum = Rational.ZERO;
for (final Rational each : list) {
    sum = sum.plus(each);
}
return sum;

Of course I needed some test data, that I generated like this:

final List<Rational> list = new ArrayList<>();
for (int i=0; i<2000; ++i) {
    list.add(Rational.valueOf(i, 100));
}
return list;

This took about 10ms. Bad, but not 13s catastrophic.

Now from using rational numbers in school, we remember that summing up numbers with equal denominators is actually quite easy. You just leave the denominator as is and add the two numerators. But what if the denominators are different? We need to find a common multiple of the two denominators before we can add. Usually we want the smallest such number, which is called the lowest common multiple (lcm). This is so that the numbers don’t just explode, i.e. get larger and larger with each addition. The algorithm to find this is to just multiply the two numbers and divide by their greatest common divisor (gcd). Whenever I held the debugger during my performance problems, I’d see the thread in a function called gcd. The standard algorithm to determine the gcd is the Euclidean Algorithm. I’m not sure if jscience uses it, but I suspect it does. Either way, it successively reduces the problem via a division to a smaller instance.

What does this all mean?

This means that much of the complexity involved happens only when there’s variation in the denominator. Looking at my actual data, I saw that this was the case for our problem. The numbers were actually close to one, but with the numerator and the denominator each close to about 4 million. This happened because the counts that we based this data on where “normalized” by a time value that was close, but not equal to one. So let’s try another input sequence:

final Random randomGenerator = new Random();
final List<Rational> list = new ArrayList<>();
for (int i=0; i<2000; ++i) {
    list.add(Rational.valueOf(4000000, 4000000 + randomGenerator.nextInt(2000)));
}
return list;

That already takes 10 seconds. Wow. Here’s the rational number it produced:

10925412090387826443356493315570970692092187751160448231723307006165619476894539076955047153673774291312083131288405937659569868481689058438177131164590263653191192222748118270107450103646129518975243330010671567374030224485257527751326361244902048868408897125206116588469496776748796898821150386049548562755608855373511995533133184126260366718312701383461146530915166140229600694518624868861494033238710785848962470254060147575168902699542775933072824986578365798070786548027487694989976141979982648898126987958081197552914965070718213744773755869969060335112209538431594197330895961595759802183116845875558763156976148877035872955887060171489805289872602037240200456259054999832744341644730504414071499368916837445036074038038173507351044919790626190261603929855676606292397018669058312742095714513746321779160111694908027299104638873374887446030780299702571350702255334922413606738293755688345624599836921568658488773148103958376515598663301740183540590772327963247869780883754669368812549202207109506869618137936835948373483789482539362351437914427056800252076700923528652746231774096814984445889899312297224641143778818898785578577803614153163690077765243456672395185549445788345311588933624794815847867376081561699024148931189645066379838249345071569138582032485393376417849961802417752153599079098811674679320452369506913889063163196412025628880049939111987749980405089109506513898205693912239150357818383975619592689319025227977609104339564104111365559856023347326907967378614602690952506049069808017773270860885025279401943711778677651095917727518548067748519579391709794743138675921116461404265591335091759686389002112580445715713768865942326646771624461518371508718346301286775279265940739820780922411618115665915206028180761758701198283575402598963356532479352810604578392844754856057089349811569436655814012237637615544417676166890247526742765145909088354349593431829508073735508662766171346365854920116894738553593715805698326801840647472004571022201012455368883190600587502030947401749733901881425019359516340993849314997522931836068574283213181677667615770392454157899894789963788314779707393082602321025304730355204512687710695657016587562258289968709342507303760359107314805479150337790244385189611378805094282650120553138575380568150214510972734241803176908917697662914714188030879994734853772797322420241420911735874903926141598416992690859929943631826094723456317312589265104334870907579391696178556354299428366394819280011410287891113591176612795009226826412471238783334239148961082442565804292473501012401378940718084589859443350905260282342990350362981901637062679381912861429756544396701574099199222399937752826106312708211791773562169940745686837853342547182813438086856565980815543626740277913678365142830117575847966404149038892476111835346566933160119385992791677587359063277202990220629004309670865867774206252830200897207368966439730136012024728717701204793182480513620275549665094200202565592742030772102704751736850897665353297536494739059325582661212315355306787427752670613324951121097833683795311514392922347268374097451268196257308005629903372871471809591087849716533132440301432155867780938535327925645340832637372702171777123816397448399703780105396941226655424025197472384099218081468916864256472238808237005121132164363385877692234230678011184351921814453560033879491735351402997266882544304106997065987376103362395437737475217181551336569975031721614790499945872209261769951117223344186839969922893394319287462384028859822057955389124951467203432571737865201780344423642467187208636881135573636815083891626138564337634176587161231028307776960866522346008589607259041199676560090157817882260300414906572885890188984036234226505815367029839231023461597364977306399898603903392434756572392816540125771578189640871020070756539777101197151773304409519870643142190955018579914630314940373832858007535828153361236115553577694543503842444481599944319287815162136101362705211937257383677282014480487759786222801447548899760241829116959865698836386442016721709983097509675552750221989521551169512674725876581185837611167980363615880958917421251873901289922888492447507837290336628975165062036681599909052030653421736716061426079882106810502703095803882805916960831442634085856041781093664688754713907512226706324967656091109936101526173370212867073380662492009726657437921033740063367290862521594119329592938626114166263957511012256023777676569002181500977475083845756500926631153405264250959378833667206532373995888322137324027620266863005721216133252342921697663864807284554205674829658250755046340838031118227643145562001361542532622713886266813492926885236832665609571019479812713355021295737820773552735161701716018010606040731647943600206193923458996150345093898644748170519757957470535978378479854546255651200511536560142431948781377187548218601919108870420102025378751015728281345799655926856602543107729659372984539588835599345223921737022220676709028150797109091782506736145801340069563865839397272145141831011878720095142353543406658905222847479419799336972983678887227301846161770296173667855239714987183774931791306562351516152727523242208973614372214119191610954209164193665209038399568256186789865817560942946289864468805486432823029457193832616134050058472575/5464071367689021145920376789564097484075057036929154325361292811121525852598101325663975897893163034606703637232625465056851133763148192531586105963101428155647567490545647427502233159652310898001125892675829093187577533366895512701590739143174316498475076791171065480136546725008720643752948237443019242161669077663609144434306128221503414531394096823915215979623953337930493605186601571769495144894636986997575880131117237208510857818613219593393080298986414277944012186244301930294333213815805316754678940597177696108355782072853392533822105101007621252067159549391148948251225551745385134586065334994558336331772298542454065874623247283672363609435360051294428160464673413148011783297358303182389731822629550376618544475198010869325105825675331154332311829064320240772190873197445422806128724029723364642376469088090535867746031708415054086042362900835830071439066729248803080864979591431807735444694059982355674331452510436222691302473693502522151731546119758216043039918795122874474779117841250524168339597048231340441394931963429195108468364711206679388129543777587115734312812004999951805288552516345754609724336541283126925634054615621607387407977448299658305191245949844785795188192329587881827885708672142850022336110188979606923986247270824545988992712993364088907981140326036171066083995899655482025878782401213185589085533281898090985040136079388970812804900747496605542168328539571899508434943602485570225905907644120282314027462195035830426406664327228058856521800556952281791943493734276488880843046612364784975328644388569123725347247071532065625240062618476483177429385912626131806870421725932016173249912942914992853735756415323674217279068679145528740177762103447741638280753518805769821177202801618302946904761889981101239141113424330262556585926281757788049928339119700279137278143586150134536970549327847433827708642630282821305576285238510965599311560018270085653975154329160951814845203648945184348538132528313719965960517692615234724933839415863834082163365616979319651204331888160659534780756175312928937580725581177783203569550625979825708835192412739747467314045215372710237518236109496682610777837094944201522879675742349874447002866525687741559327659019423524782141050034563799707395461801978917300210616390761873065433809737256362778865972956861423012424858347791919074000867019988914246185988825680768363450694954357708832975385526022445613099402197649574980990392753660371969220370462447697883319180076033708570759874351259644698980354866068784429511482751711329624930863629304545443308117342612677534958727764219861540475648492451312505519760969766401341016292089564143516344584197883268917604454917829927706134205489288603918892893943815239131020894621190795863599245502858307692284626604530452680973144088318876770254624083735638792267234407991769552946582638360068875509975769002847311018204789400549401560376453753063628076240879327047662612561558831502017122298425734701863181656884664851026481979959368508273072349808416302081774935491159815938813047108294310775621375475681754627108394755080076400344634873409823122370888409229666662703837096634538759103222727447751640114800586463155863216558367921497862783396136480309101772689723377535772396361300263399246855706948606216922101060308941294672554277063185792769730719177469014803853068307966008447841184403910224016078072279882935920347299431580783664128991812654780457701135185591782941754395263461459180940761928488860853515685525983743168631933069310771834569879795160576216776499263300025539821575767674288253419696114910586812284230709422230558006531335540918025940397918186306383352682903150594714754889631368556569576312855831657674738769087018659290558967429709446878600756119596020561987088170551193295467295484037656684414413021143993266548616775075905905925334335921152629477697210074629622902141063078657746149232034056642352265941452947845339051610301151130368316362022636711499114826671695540416257477345744126416363795225938900727969092692270788643742709421442552812735921534532156766228688341300473140115855278302077136595142902548557943030527129378779996403263450119984758775332533036452077654603781557033976641416371186050927154435643492983848051087282942559503555223474754690693742997370592039106889187781827888290578576160100274561900208861136548215743616634615083974725330617020874519606610812580339985836584711397102753448160446984238925180319975660479580098047098930179253806342651446549086560273369490291496196263969077175524002077318170194252067818804991902015489300563029607689935067689448990111925784018672159126316019672778424331051001652240822592173809393561688768265941132515679297537471384753992855568256114701369550476003237008840508060572457453896791033992685192069703595482787771374051189250065726225137532026227150630791972777126392521002221370419505711150022179216266239656298115575018443700688208844387102582445812545858014862427316785193110884751319467750425511273629581416588296942433219322216784262821066075700266485645060935996743388485096744598169509920624971167075214788838073469621687619355816573640360338756385397428237445511332615921133308459043700086925442114337299109227541364012352140312577797531234832237279430947774637533319353713938562360646441591033255036

I kid you not, that’s over 10000 digits! In the editor I’m writing this in, that’s roughly 3 pages. No wonder it took that long. Let’s use even more variation in the numbers:

final Random randomGenerator = new Random();
final List<Rational> list = new ArrayList<>();
for (int i=0; i<2000; ++i) {
    list.add(Rational.valueOf(4000000 + randomGenerator.nextInt(5000),
            4000000 + randomGenerator.nextInt(20000)));
}

Now that already takes 16 s, with about 14000 digits. Oh boy. Now the maximum number of values I expected to do this averaging for was about 4000, so let’s scale that up:

final Random randomGenerator = new Random();
final List<Rational> list = new ArrayList<>();
for (int i=0; i<4000; ++i) {
    list.add(Rational.valueOf(4000000 + randomGenerator.nextInt(5000),
            4000000 + randomGenerator.nextInt(20000)));
}
return list;

That took 77 seconds! More than 4 times as long as for half the amount of data. The resulting number has over 26000 digits. Obviously, this scales way worse than linear.

An Explanation

By now it was pretty clear what was happening: The ever so slightly not-1 values were causing an “explosion” in the denominator after all. When two denominators are coprime, i.e. their greatest common divisor is 1, the length of the denominators just adds up. The effect also happens when the gcd is very small, such as 2 or 3. This can happen quite a lot with huge numbers in a sufficiently large range. So when things go bad for your input data, the length of the denominator just keeps growing linearly with the number of input values, making each successive addition slower and slower. Your rationals just exploded.

Conclusion

After this, it became apparent that using rationals was not a great idea after all. You should be very careful when doing series of additions with them. Ironically, we were throwing away all the precision anyways before presenting the number to a user. There’s no way for anyone to grok a 26000 digit number anyways, especially if the result is basically 4000.xx. I learned my lesson and buried the dream of perfect arithmetic. I’m now using fixed point arithmetic instead.

Platform independent development with .NET

We develop most of our projects as platform independent applications, usually running under Windows, Mac and Linux. There are exceptions, for example when it is required to communicate with special hardware drivers or third-party libraries or other components that are not available on all platforms. But even then we isolate these parts into interchangeable modules that can be operated either in a simulated mode or with the real thing. The simulated modes are platform independent. Developers usually can work on the code base using their favorite operating system. Of course, it has to be tested on the target platform(s) that the application will run on in the end.

Platform independent development is both a matter of technology choices and programming practices. Concerning the technology the ecosystem based on the Java VM is a proven choice for platform independent development. We have developed many projects in Java and other JVM based languages. All of our developers are polyglots and we are able to develop software with a wide variety of programming languages.

The .NET ecosystem

Until recently the .NET platform has been known to be mainly a Microsoft Windows based ecosystem. The Mono project was started by non-Microsoft developers to provide an open source implementation of .NET for other operating systems, but it never had the same status as Microsoft’s official .NET on Windows.

However, recently Microsoft has changed course: They open sourced their .NET implementation and are porting it to other platforms. They acquired Xamarin, the company behind the Mono project, and they are releasing developer tools such as IDEs for non-Windows platforms.

IDEs for non-Windows platforms

If you want to develop a .NET project on a platform other than Windows you now have several choices for an IDE:

I am currently using JetBrains Rider on a Mac to develop a .NET based application in C#. Since I have used other JetBrains products before it feels very familiar. Xamarin Studio, MonoDevelop, VS for Mac and JetBrains Rider all support the solution and project file format of the original Visual Studio for Windows. This means a .NET project can be developed with any of these IDEs.

Web applications

The .NET application I am developing is based on Web technologies. The server side uses the NancyFX web framework, the client side uses React. Persistence is done with Microsoft’s Entity Framework. All the libraries I need for the project like NancyFX, the Entity Framework, a PostgreSQL driver, JSON.NET, NLog, NUnit, etc. work on non-Windows platforms without any problems.

Conclusion

Development of .NET applications is no longer limited to the Windows platform. Microsoft is actively opening up their development platform for other operating systems.

Self-contained projects in python

An important concept for us is the notion of self-containment. For a project in development this means you find everything you need to develop and run the software directly in the one repository you check out/clone. For practical reasons we most of the time omit the IDE and the basic runtime like Java JDK or the Python interpreter. If you have these installed you are good to go in seconds.

What does this mean in general?

Usually this means putting all your dependencies either in source or object form (dll, jar etc.) directly in a directory of your project repository. This mostly rules out dependency managers like maven. Another not as obvious point is to have hardware dependencies mocked out in some way so your software runs without potentially unavailable hardware attached. The same is true for software services somewhere on the net that may be unavailable, like a payment service for example.

How to do it for Python

For Python projects this means not simply installing you dependencies using the linux package manager, system-wide pip or other dependency management tools but using a virtual environment. Virtual environments are isolated Python environments using an available, but defined Python interpreter on the system. They can be created by the tool virtualenv or since Python 3.3 the included tool venv. You can install you dependencies into this environment e.g. using pip which itself is part of the virtualenv. Preparing a virtual env for your project can be done using a simple shell script like this:

python2.7 ~/my_project/vendor/virtualenv-15.1.0/virtualenv.py ~/my_project_env
source ~/my_project_env/bin/activate
pip install ~/my_project/vendor/setuptools_scm-1.15.0.tar.gz
pip install ~/my_project/vendor/six-1.10.0.tar.gz
...

Your dependencies including virtualenv (for Python installations < 3.3) are stored into the projects source code repository. We usually call the directory vendor or similar.

As a side note working with such a virtual env even remotely work like charm in the PyCharm IDE by selecting the Python interpreter of the virtual env. It correctly shows all installed dependencies and all the IDE support for code completion and imports works as expected:

python-interpreter-settings

What you get

With such a setup you gain some advantages missing in many other approaches:

  • No problems if the target machine has no internet access. This would be problematic to classical pip/maven/etc. approaches.
  • Mostly hassle free development and deployment. No more “downloading the internet” feeling or driver/hardware installation issues for the developer. A deployment is in the most simple cases as easy as a copy/rsync.
  • Only minimal requirements to the base installation of developer, build, deployment or other target machines.
  • Perfectly reproducable builds and tests in isolation. You continuous integration (CI) machine is just another target machine.

What it costs

There are costs of this approach of course but in our experience the benefits outweigh them by a great extent. Nevertheless I want to mention some downsides:

  • Less tool support for managing the dependencies, especially if your are used to maven and friends and happen to like them. Pip can work with local archives just fine but updating is a bit of manual work.
  • Storing (binary) dependencies in your repository increases the checkout size. Nowadays disk space and local network speeds make mostly irrelevant, especially in combination with git. Shallow-clones can further mitigate the problem.
  • You may need to put in some effort for implementing mocks for your hardware or third-party software services and a mechanism for switching between simulation and the real stuff.

Conclusion

We have been using self-containment to great success in varying environments. Usually, both developers and clients are impressed by the ease of development and/or installation using this approach regardless if the project is in Java, C++, Python or something else.

Integration Tests with CherryPy and requests

CherryPy is a great way to write simple http backends, but there is a part of it that I do not like very much. While there is a documented way of setting up integration tests, it did not work well for me for a couple of reasons. Mostly, I found it hard to integrate with the rest of the test suite, which was using unittest and not py.test. Failing tests would apparently “hang” when launched from the PyCharm test explorer. It turned out the tests were getting stuck in interactive mode for failing assertions, a setting which can be turned off by an environment variable. Also, the “requests” looked kind of cumbersome. So I figured out how to do the tests with the fantastic requests library instead, which also allowed me to keep using unittest and have them run beautifully from within my test explorer.

The key is to start the CherryPy server for the tests in the background and gracefully shut it down once a test is finished. This can be done quite beautifully with the contextmanager decorator:

from contextlib import contextmanager

@contextmanager
def run_server():
    cherrypy.engine.start()
    cherrypy.engine.wait(cherrypy.engine.states.STARTED)
    yield
    cherrypy.engine.exit()
    cherrypy.engine.block()

This allows us to conviniently wrap the code that does requests to the server. The first part initiates the CherryPy start-up and then waits until that has completed. The yield is where the requests happen later. After that, we initiate a shut-down and block until that has completed.

Similar to the “official way”, let’s suppose we want to test a simple “echo” Application that simply feeds a request back at the user:

class Echo(object):
    @cherrypy.expose
    def echo(self, message):
        return message

Now we can write a test with whatever framework we want to use:

class TestEcho(unittest.TestCase):
    def test_echo(self):
        cherrypy.tree.mount(Echo())
        with run_server():
            url = "http://127.0.0.1:8080/echo"
            params = {'message': 'secret'}
            r = requests.get(url, params=params)
            self.assertEqual(r.status_code, 200)
            self.assertEqual(r.content, "secret")

Now that feels a lot nicer than the official test API!

A good name will shine forever

Naming things is supposedly one of the two hard things in Computer Science. Here are some tips on naming for programmers.

Getters

In the Java world property accessors are traditionally prefixed with “get” and “set”, the Java bean convention:

person.getFirstName()

Code becomes more pleasant to read if you omit the “get” prefix:

person.firstName()

Of course, you can do this only if you don’t use a framework that depends on the convention to recognize properties via reflection (like some OR mappers, for example).

What about setters? I rarely write setters anymore. If you design your classes as immutable types you don’t need setters. Even if your class has mutable state you probably want to control this state via methods more specific to the domain of the problem. Also, the more you apply the tell, don’t ask principle the less you will find the need for getters.

Brevity vs. verbosity

There were times when it was common to see mass variable declarations like the following at the beginning of a function:

int i, j, k, l, m, n;
float a, b, c, u, v, x, y, z;

Fortunately, times have changed for the better, and most programmers are aware that descriptive naming is important. However, some programmers do over-compensate. Length of an identifier is not a virtue by itself.

The Objective-C Cocoa framework is famous for overly long method names:

[array objectAtIndex:index]

Parts of Objective-C were inspired by Smalltalk. But in Smalltalk the same method is called at:

[array at:index]

This is a reasonably sufficient name for such a common functionality in programming.

Here’s another example: If the concept of a measurement station is very prevalent in the domain of your project then it’s ok to call instances just station instead of measurementStation if it’s the only kind of station in the domain.

Yes, the IDE does auto-complete long names. However, readability of the code decreases if the reader has to scan the same long-winded names over and over again:

MeasurementStation measurementStation = new MeasurementStation();
Measurement measurement = measurementStation.startMeasurement();

Often you can find names that are more to the point than longer descriptions, e.g. acquire instead of takeOwnershipOf. (source)

Hungarian notation and friends

The famous Hungarian notation is no longer in widespread use. However, there are variations of it that I would recommend against as well for the sake of readability. For example, bookList or bookArray can be simply books. Another variation would be conventions like myField or m_field for member variables. If you need these notations to determine the origin of a variable, then your scopes are probably too big, i.e. your methods, functions or classes are too long. Additionally, IDEs and editors for programmers can highlight these different scopes anyway. Other examples for unnecessary Hungarian-style notation are IFoo for interfaces, EFoo for enums or the infamous FooImpl.

Screaming constants

There is really no need for constants and enum values to constantly SCREAM at you and other readers. This SCREAMING_CASE convention has its origin in C, where constants used to be defined as macros when the const keyword wasn’t introduced yet, and it later found its way into other programming language ecosystems. Names for constants and enum values are not more important than other identifiers and don’t have to be spelled differently. Try it, you will enjoy the newfound silence in your code.

Conclusion

These are some tips to improve readability of code through better names. Some of these tips go against traditional conventions, so you should discuss them with your team before applying them. Consistency within an existing code base can definitely be more important. But if you have the freedom you should definitely give them a try.

Discount UX

Creating a better user experience does not need to be expensive, you don’t need fancy tools like eye tracking or facial expression detection to make a difference. Here are some tools I use to get a better understanding of what users need.

Sketching

The universal tool to communicate besides words are sketches. Whether I draw an idea for a user interface, use a state diagram to discuss transitions or draw boxes and arrows to show connections, sketches at the heart of everyday working and thinking. What you need for this? Paper and a pencil.

Observation

In order to understand a human using your system you not only need to talk to him but you have to observe him doing his work. This is not just playing the fly on the wall. These sessions are interactive in nature, resulting in a back and forth. The user shows you how he works, you ask questions, he goes into more detail, you wonder about certain points, he explain his reasoning (or sometimes has wonders himself). Again paper and pencil is great. Having the option to take screenshots or (permission provided) a photo is even better. The most crucial is an open mind. You need to go in with a beginner’s mind: do not assume anything and wonder about almost everything.

Card sort

Observation is a pretty direct way to learn about the user doing his work. But even then some part of the mental model is hidden. To dig deeper into what kind of concepts and words he uses and how these are interrelated, a card sorting session can be helpful. Together with him we draw those words onto cards and let him sort them into groups and give them priorities. Here often discussions arise about the exact words you write on the paper. Some words need to be in more than one group, two different words mean the same, another word means something different in a different context. Here you also can take a glimpse at (sub-)domain bounds. Again cards, a pencil and paper to take notes is all you need.

Design studio or crazy 8

Sketching is so helpful you can do it even in a group. If you need to brainstorm for a user interface you take a sheet of paper and divide into 8 sections. Then you draw 8 very simple sketchy version of the UI in 8 – 16 minutes. After that you evaluate them in the group against your goals. The first round produces divergent sketches after seeing each other drawings, you will see that the next round converges into a common direction. You probably guessed it already: paper and a pencil is all you need.

Paper Journey Mapping

The last one in this group is more of an analyzing and communicating results tool. A journey map is a way to show the user (his thoughts, feelings and actions) along the steps he takes in his daily work. This map can highlight different aspects of your findings: the many applications he has to use to get his job done, the critical parts which mostly affect his mood, the frustrations, the many points for failure, the different people involved and so on. A large (DIN A3 or bigger) piece of paper is helpful and different colors of pencils help to highlight aspects.

Summary

All these methods use (almost only) pen and paper but are very helpful in getting to a better user understanding and therefore a better user experience. What are your tools for understanding?
If you have any questions or need more details please feel free to comment. I am at the starting point of the user experience journey and like to learn from others.